Abstract:
A method for promoting healing of tissue by delivering a bioreactor into a subject is provided. The bioreactor is an enclosed housing with paracrine factor producing cells enclosed within the housing. The housing is impermeable to the paracrine factor producing cells, impermeable to immunological cells outside of the housing, and permeable to paracrine factors produced by the paracrine factor producing cells. The paracrine factors produced by the paracrine factor producing cells are released out of the housing to promote healing of the tissue.
Abstract:
Certain embodiments according to the present invention provide sleeve devices suitable for a wide range of therapeutic uses. In accordance with certain embodiments, the therapeutic sleeve device includes a nanofiber fabric assembly, which defines a plurality of pores, and at least one layer of cells embedded in the nanofiber fabric assembly.
Abstract:
The present application relates to systems and methods for non-invasively determining at least one of left ventricular end diastolic pressure (LVEDP) or pulmonary capillary wedge pressure (PCWP) in a subject's heart, comprising: receiving, by a computer, a plurality of signals from a plurality of non-invasive sensors that measure a plurality of physiological effects that are correlated with functioning of said subject's heart, said plurality of physiological effects including at least one signal correlated with left ventricular blood pressure and at least one signal correlated with timing of heartbeat cycles of said subject's heart; training a machine learning model on said computer using said plurality of signals for periods of time in which said plurality of signals were being generated during a heart failure event of said subject's heart; determining said LVEDP or PCWP using said machine learning model at a time subsequent to said training and subsequent to said heart failure event.
Abstract:
Certain embodiments according to the present invention provide a method for forming medical devices conformally coated with a hydrogel having a wide variety of therapeutic uses. In one aspect, certain embodiments of the invention provide a method for forming a hydrogel-coated medical device comprising immersing a medical device in a polymer solution to form an adhesive layer on an outer surface of the medical device and contacting the medical device with a hydrogel precursor solution having a pH of less than 7 to react the adhesive layer with the hydrogel precursor solution and form a conformal hydrogel coating.
Abstract:
A method for promoting healing of tissue by delivering a bioreactor into a subject is provided. The bioreactor is an enclosed housing with paracrine factor producing cells enclosed within the housing. The housing is impermeable to the paracrine factor producing cells, impermeable to immunological cells outside of the housing, and permeable to paracrine factors produced by the paracrine factor producing cells. The paracrine factors produced by the paracrine factor producing cells are released out of the housing to promote healing of the tissue.
Abstract:
Implantable pressure-actuated systems to deliver a drug and/or other substance in response to a pressure difference between a system cavity and an exterior environment, and methods of fabrication and use. A pressure-rupturable membrane diaphragm may be tuned to rupture at a desired rupture threshold, rupture site, with a desired rupture pattern, and/or within a desired rupture time. Tuning may include material selection, thickness control, surface patterning, substrate support patterning. The cavity may be pressurized above or evacuated below the rupture threshold, and a diaphragm-protective layer may be provided to prevent premature rupture in an ambient environment and to dissipate within an implant environment. A drug delivery system may be implemented within a stent to release a substance upon a decrease in blood pressure. The cavity may include a thrombolytic drug to or other substance to treat a blood clot.
Abstract:
The present application relates to systems and methods for non-invasively determining at least one of left ventricular end diastolic pressure (LVEDP) or pulmonary capillary wedge pressure (PCWP) in a subject's heart, comprising: receiving, by a computer, a plurality of signals from a plurality of non-invasive sensors that measure a plurality of physiological effects that are correlated with functioning of said subject's heart, said plurality of physiological effects including at least one signal correlated with left ventricular blood pressure and at least one signal correlated with timing of heartbeat cycles of said subject's heart; training a machine learning model on said computer using said plurality of signals for periods of time in which said plurality of signals were being generated during a heart failure event of said subject's heart; determining said LVEDP or PCWP using said machine learning model at a time subsequent to said training and subsequent to said heart failure event.
Abstract:
A therapeutic patch includes at least one layer of a nanofiber fabric and at least one of a plurality of stem cells or a plurality of stem cell-derived paracrine factors embedded in the nanofiber fabric. The therapeutic patch is produced such that the nanofiber fabric is formed of a nanofiber web.
Abstract:
Implantable pressure-actuated systems to deliver a drug and/or other substance in response to a pressure difference between a system cavity and an exterior environment, and methods of fabrication and use. A pressure-rupturable membrane diaphragm may be tuned to rupture at a desired rupture threshold, rupture site, with a desired rupture pattern, and/or within a desired rupture time. Tuning may include material selection, thickness control, surface patterning, substrate support patterning. The cavity may be pressurized above or evacuated below the rupture threshold, and a diaphragm-protective layer may be provided to prevent premature rupture in an ambient environment and to dissipate within an implant environment. A drug delivery system may be implemented within a stent to release a substance upon a decrease in blood pressure. The cavity may include a thrombolytic drug to or other substance to treat a blood clot.
Abstract:
Certain embodiments according to the present invention provide sleeve devices suitable for a wide range of therapeutic uses. In accordance with certain embodiments, the therapeutic sleeve device includes a nanofiber fabric assembly, which defines a plurality of pores, and at least one layer of cells embedded in the nanofiber fabric assembly.