Abstract:
A circuit includes a phase-locked loop having a phase-locked loop output to provide a first phase signal and a second phase signal phase delayed with respect to the first phase signal. The circuit further includes a digital circuit having a digital circuit input and an output. The digital circuit input couples to the phase-locked loop output. On the digital circuit output, the digital circuit is configured to provide a first digital-to-analog converter (DAC) enable signal and a second DAC enable signal. The circuit also includes first and second DACs. The first DAC is coupled to the digital circuit. The first DAC has a first enable input coupled to the digital circuit output to receive the first DAC enable signal. The second DAC is coupled to the digital circuit. The second DAC has a second enable input coupled to the digital circuit output to receive the second DAC enable signal.
Abstract:
A method of forming an integrated resonator apparatus includes depositing alternating dielectric layers of lower and higher acoustic impedance materials over a substrate. First and second resonator electrodes are formed over the alternating dielectric layers, with a piezoelectric layer located between the first and second resonator electrodes. A mass bias is formed over the first and second resonator electrodes. The mass bias, first and second electrodes, piezoelectric layer, and alternating dielectric layers may be encapsulated with a plastic mold fill.
Abstract:
A linear variable differential transformer (“LVDT”) including a semiconductor substrate and a plurality of coils formed at least partially on the substrate.
Abstract:
A semiconductor device comprises a semiconductor wafer; a piezoelectric resonator formed on the wafer, and an active circuit also formed on the wafer. The active circuit (e.g., a frequency divider) is electrically connected to the piezoelectric resonator.
Abstract:
A method of forming a resonator includes forming top and bottom dielectric structures over a substrate. A piezoelectric layer is formed between the top and bottom dielectric structures. A bottom electrode is formed between the piezoelectric layer and the bottom dielectric structure, and a top electrode is formed between the piezoelectric layer and the top dielectric structure. A metal layer is formed over the top dielectric structure and is patterned, thereby forming a first contact pad making electrical contact to the top electrode, a second contact pad making electrical contact with the bottom electrode, and a mass bias located over the top dielectric structure.
Abstract:
A semiconductor device comprises a semiconductor wafer; a piezoelectric resonator formed on the wafer, and an active circuit also formed on the wafer. The active circuit (e.g., a frequency divider) is electrically connected to the piezoelectric resonator.