摘要:
Nanoparticles can be embedded into a medical device by accelerating them to a speed of between 100 m/s and 1,000 m/s and embedding the particles into a polymer surface of a medical device or a precursor thereof. In some cases, the nanoparticles can be embedded until the nanoparticles accumulate in sufficient number to adhere together to form a coating over the polymer surface. The nanoparticles can provide a conductive pathway, an abrasion resistant surface, a pro-healing surface, and/or an anti-bacterial surface.
摘要:
A medical device is provided with a porous region including a reservoir zone including a polymer and a protective zone between adjacent tissue and the reservoir zone that restricts the tissue from direct contact with the polymer.
摘要:
Molds and related methods and articles are disclosed. In certain embodiments, an exposed surface of the mold has regions with different coefficients of friction.
摘要:
Nanoparticle precursor structures, nanoparticle structures, and composite materials that include the nanoparticle structures in a polymer to form a composite material. The nanoparticle structures have chemical linkage moieties capable of forming non-covalent bonds with portions of a polymer for the composite material. Such composite materials are useful as biomaterials in medical devices.
摘要:
An endoprosthesis includes a plurality of struts defining a flow passage. At least one strut includes (a) a body comprising a bioerodible material and having a thickness and (b) a coating overlying the body. The coating includes a plurality of regions that allow physiological fluids to contact a plurality of corresponding areas of the underlying body when the endoprosthesis is implanted in a physiological environment. The plurality of regions are sized and arranged so that the contacted areas of the body erode substantially through the body in the thickness direction while the coating remains on the body when the endoprosthesis is implanted in the physiological environment.
摘要:
A method includes: providing a tubular substrate in a chamber, the tubular substrate having a lumen, an a luminal surface and a luminal surface; providing a target in the lumen; depositing a first coating onto the abluminal surface and a second coating onto the luminal surface while keeping the tubular substrate in the chamber. An endoprosthesis, such as a stent, including a first coating on at least one portion of its abluminal surface and a second coating on at least one portion of its luminal surface is also disclosed.
摘要:
The present disclosure relates to compounds from which nanofibers can be produced, the resulting nanofibers produced from the compounds, and nanofiber reinforced polymers prepared using the nanofibers and a polymer. The compounds used in forming the nanofibers include chemical linkage moieties that are capable of forming non-covalent bonds with portions of the polymer so as to form the nanofiber reinforced polymers. The nanofiber reinforced polymers are useful as biomaterials in medical devices.
摘要:
A method includes: providing a tubular substrate in a chamber, the tubular substrate having a lumen, an a luminal surface and a luminal surface; providing a target in the lumen; depositing a first coating onto the abluminal surface and a second coating onto the luminal surface while keeping the tubular substrate in the chamber. An endoprosthesis, such as a stent, including a first coating on at least one portion of its abluminal surface and a second coating on at least one portion of its luminal surface is also disclosed.