Abstract:
An interconnection between a sublithographic-pitched structure and a lithographic pitched structure is formed. A plurality of conductive lines having a sublithographic pitch may be lithographically patterned and cut along a line at an angle less than 45 degrees from the lengthwise direction of the plurality of conductive lines. Alternately, a copolymer mixed with homopolymer may be placed into a recessed area and self-aligned to form a plurality of conductive lines having a sublithographic pitch in the constant width region and a lithographic dimension between adjacent lines at a trapezoidal region. Yet alternately, a first plurality of conductive lines with the sublithographic pitch and a second plurality of conductive lines with the lithographic pitch may be formed at the same level or at different.
Abstract:
A semiconductor-containing heterostructure including, from bottom to top, a III-V compound semiconductor buffer layer, a III-V compound semiconductor channel layer, a III-V compound semiconductor barrier layer, and an optional, yet preferred, III-V compound semiconductor cap layer is provided. The barrier layer may be doped, or preferably undoped. The III-V compound semiconductor buffer layer and the III-V compound semiconductor barrier layer are comprised of materials that have a wider band gap than that of the III-V compound semiconductor channel layer. Since wide band gap materials are used for the buffer and barrier layer and a narrow band gap material is used for the channel layer, carriers are confined to the channel layer under certain gate bias range. The inventive heterostructure can be employed as a buried channel structure in a field effect transistor.
Abstract:
An integrated optoelectronic circuit and process for making is described incorporating a photodetector and a MODFET on a chip. The chip contains a single-crystal semiconductor substrate, a buffer layer of SiGe graded in composition, a relaxed SiGe layer, a quantum well layer, an undoped SiGe spacer layer and a doped SiGe supply layer. The photodetector may be a metal-semiconductor-metal (MSM) or a p-i-n device. The detector may be integrated with an n- or p-type MODFET, or both in a CMOS configuration, and the MODFET can incorporate a Schottky or insulating gate. The invention overcomes the problem of producing Si-manufacturing-compatible monolithic high-speed optoelectronic circuits for 850 nm operation by using epixially-grown Si/SiGe heterostructure layers.
Abstract:
A semiconductor structure, such as a CMOS structure, includes a gate electrode that has a laterally variable work function. The gate electrode that has the laterally variable work function may be formed using an angled ion implantation method or a sequential layering method. The gate electrode that has the laterally variable work function provides enhanced electrical performance within an undoped channel field effect transistor device.
Abstract:
A structure and method of fabricating a high-mobility semiconductor layer structure and field-effect transistor (MODFET) that includes a high-mobility conducting channel, while at the same time, maintaining counter doping to control deleterious short-channel effects. The MODFET design includes a high-mobility conducting channel layer wherein the method allows the counter doping to be formed using a standard technique such as ion implantation, and further allows the high-mobility channel to be in close proximity to the counter doping without degradation of the mobility.
Abstract:
A method for fabricating a structure for use in fabrication of a PiN heterojunction tunnel field effect transistor (TFET) includes forming an alignment trench in a silicon wafer; forming a silicon germanium (SiGe) growth trench in the silicon wafer; growing a p-type SiGe region in the SiGe growth trench; forming a first oxide layer over the alignment trench and the p-type SiGe region; forming a hydrogen implantation region in the silicon wafer, the hydrogen implantation region dividing the silicon wafer into a upper silicon region and a lower silicon region; bonding the first oxide layer to a second oxide layer located on a handle wafer, forming a bonded oxide layer comprising the first oxide layer and the second oxide layer; and separating the lower silicon region from the upper silicon region at the hydrogen implantation region.
Abstract:
A semiconductor device includes a semiconductor substrate; a buried insulator layer disposed on the semiconductor substrate, the buried insulator layer configured to retain an amount of charge in a plurality of charge traps in response to a radiation exposure by the semiconductor device; a semiconductor layer disposed on the buried insulating layer; a second insulator layer disposed on the semiconductor layer; a gate conducting layer disposed on the second insulator layer; and one or more side contacts electrically connected to the semiconductor layer. A method for radiation monitoring, the method includes applying a backgate voltage to a radiation monitor, the radiation monitor comprising a field effect transistor (FET); exposing the radiation monitor to radiation; determining a change in a threshold voltage of the radiation monitor; and determining an amount of radiation exposure based on the change in threshold voltage.
Abstract:
A method for fabricating a structure for use in fabrication of a PiN heterojunction tunnel field effect transistor (TFET) includes forming an alignment trench in a silicon wafer; forming a silicon germanium (SiGe) growth trench in the silicon wafer; growing a p-type SiGe region in the SiGe growth trench; forming a first oxide layer over the alignment trench and the p-type SiGe region; forming a hydrogen implantation region in the silicon wafer, the hydrogen implantation region dividing the silicon wafer into a upper silicon region and a lower silicon region; bonding the first oxide layer to a second oxide layer located on a handle wafer, forming a bonded oxide layer comprising the first oxide layer and the second oxide layer; and separating the lower silicon region from the upper silicon region at the hydrogen implantation region.
Abstract:
A semiconductor structure, such as a CMOS structure, includes a gate electrode that has a laterally variable work function. The gate electrode that has the laterally variable work function may be formed using an angled ion implantation method or a sequential layering method. The gate electrode that has the laterally variable work function provides enhanced electrical performance within an undoped channel field effect transistor device.
Abstract:
A method and structure in which Ge-based semiconductor devices such as FETs and MOS capacitors can be obtained are provided. Specifically, the present invention provides a method of forming a semiconductor device including a stack including a dielectric layer and a conductive material located on and/or within a Ge-containing material (layer or wafer) in which the surface thereof is non-oxygen chalcogen rich. By providing a non-oxygen chalcogen rich interface, the formation of undesirable interfacial compounds during and after dielectric growth is suppressed and interfacial traps are reduced in density.