Abstract:
A polishing wheel is pushed up and down in the Z-axis direction owing to a wafer surface shape. And the polishing amount depends on the height of protrusions on a wafer surface. Where a spindle is a rigid body in the Z-axis direction, the pressing force of the polishing wheel caused by vertical movement of a tool varies depending on the position on a wafer and hence polishing is not performed uniformly To solve this problem, the spindle is provided with a Z-axis parallel leaf spring mechanism. Push-up and push-down actions of the polishing wheel are absorbed by displacement of the parallel leaf spring mechanism. This enables uniform polishing. Since the tool can be hardened, the flatness can also be improved.
Abstract:
A polishing wheel is pushed up and down in the Z-axis direction owing to a wafer surface shape. And the polishing amount depends on the height of protrusions on a wafer surface. Where a spindle is a rigid body in the Z-axis direction, the pressing force of the polishing wheel caused by vertical movement of a tool varies depending on the position on a wafer and hence polishing is not performed uniformly. To solve this problem, the spindle is provided with a Z-axis parallel leaf spring mechanism. Push-up and push-down actions of the polishing wheel are absorbed by displacement of the parallel leaf spring mechanism. This enables uniform polishing. Since the tool can be hardened, the flatness can also be improved.
Abstract:
The electro-chemical machining apparatus of this invention is designed to smoothing a metal film by efficiently reducing initial rough surface and removing excessive metal film with reduced damages to the metal film. For this end, the electro-chemical machining apparatus performs electro-chemical machining of an object to be machined having a metal film on the surface to be machined. Such apparatus has a means for holding the object to be machined, a wiper for wiping the surface of the object to be machined, a means for supplying electrolytic solution onto the surface of the object to be machined, a first electrode disposed at a position opposed to the surface of the object to be machined, a second electrode disposed at a peripheral portion on the surface of the object to be machined, and a power supply for causing electrical current to flow between the second electrode on the surface of the object to be machined and the first electrode.
Abstract:
A method of production and a method of polishing a semiconductor device and a polishing apparatus, capable of easily flattening an initial unevenness of a metal film, excellent in efficiency of removal of an excess metal film, and capable of suppressing damage to an interlayer insulation film below the metal film when flattening the metal film by polishing, the polishing method including the steps of interposing an electrolytic solution including a chelating agent between a cathode member and the copper film, applying a voltage between the cathode member used as a cathode and the copper film used as an anode to oxidize the surface of the copper film and forming a chelate film of the oxidized copper, selectively removing a projecting portion of the chelate film corresponding to the shape of the copper film to expose the projecting portion of the copper film at its surface, and repeating the above chelate film forming step and the above chelate film removing step until the projecting portion of the copper film is flattened.
Abstract:
A method of production and a method of polishing a semiconductor device and a polishing apparatus, capable of easily flattening an initial unevenness of a metal film, excellent in efficiency of removal of an excess metal film, and capable of suppressing damage to an interlayer insulation film below the metal film when flattening the metal film by polishing, the polishing method including the steps of interposing an electrolytic solution including a chelating agent between a cathode member and the copper film, applying a voltage between the cathode member used as a cathode and the copper film used as an anode to oxidize the surface of the copper film and forming a chelate film of the oxidized copper, selectively removing a projecting portion of the chelate film corresponding to the shape of the copper film to expose the projecting portion of the copper film at its surface, and repeating the above chelate film forming step and the above chelate film removing step until the projecting portion of the copper film is flattened.
Abstract:
The electrochemical machining apparatus of this invention is designed to smoothing a metal film by efficiently reducing initial rough surface and removing excessive metal film with reduced damages to the metal film. For this end, the electrochemical machining apparatus performs electrochemical machining of an object to be machined having a metal film on the surface to be machined. Such apparatus has a means for holding the object to be machined, a wiper for wiping the surface of the object to be machined, a means for supplying electrolytic solution onto the surface of the object to be machined, a first electrode disposed at a position opposed to the surface of the object to be machined, a second electrode disposed at a peripheral portion on the surface of the object to be machined, and a power supply for causing electrical current to flow between the second electrode on the surface of the object to be machined and the first electrode.
Abstract:
There is provided a semiconductor laser device that enables flip-chip assembly by providing an embedding section around a mesa section, and has an improved emission lifetime. There is also provided a photoelectric converter and an optical information processing unit each having the semiconductor laser device. The semiconductor laser device includes: a mesa section including an active layer, and having a first electrode on a top surface; an embedding section covering the mesa section, and having a first connection aperture that reaches the first electrode; and a first wiring provided on the embedding section to be laid across the first connection aperture, the first wiring being electrically connected to the first electrode through the first connection aperture.
Abstract:
An optical fiber and lens substrate assembly includes: an optical fiber component including an optical fiber core wire, and an end-surface-fixing resin block in which the optical fiber core wire is embedded, and cross section of an optical fiber element wire and a secondary coating that constitute the optical fiber core wire are exposed to a smooth surface thereof; and a lens substrate attached to the smooth surface of the end-surface-fixing resin block.
Abstract:
There is provided a semiconductor laser device that enables flip-chip assembly by providing an embedding section around a mesa section, and has an improved emission lifetime. There is also provided a photoelectric converter and an optical information processing unit each having the semiconductor laser device. The semiconductor laser device includes: a mesa section including an active layer, and having a first electrode on a top surface; an embedding section covering the mesa section, and having a first connection aperture that reaches the first electrode; and a first wiring provided on the embedding section to be laid across the first connection aperture, the first wiring being electrically connected to the first electrode through the first connection aperture.
Abstract:
A light emitting device-light receiving device assembly includes: a mount substrate having first and second surfaces, and including a first base as a raised portion on the first surface; a light receiving device having first and second surfaces, the first surface of the light receiving device being anchored on the first base; and a light emitting device, the light receiving device including a light passage portion allowing for passage of light emitted by the light emitting device, the light emitted by the light emitting device emerging to outside through the light passage portion, the first base, and the mount substrate, the light receiving device receiving externally incident light through the mount substrate and the first base, the light receiving device including an annular second base as a raised portion on the second surface of the light receiving device, and the light emitting device being anchored on the second base.