Abstract:
Provided are a method and an apparatus for repairing a memory cell in a memory test system. A test device detects a fail address by testing a memory device according to a test command, and temporarily stores the fail address in a fail address memory (FAM). The fail address is transmitted to the memory device according to a fail address transmission mode, is temporarily stored in a temporary fail address storage of the memory device, and is then stored in an anti-fuse array, which is a non-volatile storage device. To secure the reliability of data, stored data can be read to verify the data and a verification result can be transmitted in series or in parallel to the test device.
Abstract:
A semiconductor memory device includes a memory cell array, a repair control circuit and a refresh control circuit. The memory cell array includes a plurality of memory cells and a plurality of redundancy memory cells. The repair control circuit receives a repair command and performs a repair operation on a first defective memory cell among the plurality of memory cells during a repair mode. The semiconductor memory device may operate in a repair mode in response to the repair command. The refresh control circuit performs a refresh operation on non-defective ones of the plurality of memory cells during the repair mode.
Abstract:
A memory device may include a pre-charge control circuit, an active control circuit, and a driver circuit. The pre-charge control circuit may be configured to receive an active command after receiving a pre-charge command for a first bank, determine whether or not a pre-charge operation for the first bank has ended when receiving the active command, and generate an active instruction signal according to a result of the determination. The active control circuit may be configured to generate an active control signal for an active operation according to the active instruction signal. The driver circuit may be configured to control an active operation according to the active control signal.
Abstract:
Provided is a method of detecting a concentrated address of a semiconductor device using an n-bit address. The method includes dividing the n-bit address into k groups, wherein each of n and k is an integer equal to or greater than 2, for each group of the k groups, detecting one or more concentrated sub addresses corresponding to the group, and generating at least one concentrated address by combining the one or more concentrated sub addresses for the k groups.
Abstract:
A memory module includes a memory device, a command/address buffering device, and a processing data buffer. The memory device includes a memory cell array, a first set of input/output terminals, each terminal configured to receive first command/address bits, and a second set of input/output terminals, each terminal configured to receive both data bits and second command/address bits. The command/address buffering device is configured to output the first command/address bits to the first set of input/output terminals. The processing data buffer is configured to output the data bits and second command/address bits to the second set of input/output terminals. The memory device is configured such that the first command/address bits, second command/address bits, and data bits are all used to access the memory cell array.
Abstract:
A semiconductor memory device includes a first memory block of a first type of memory; and a second memory block of a second type of memory having a different type from the first type. A first address region of the first memory block and a second address region of the second memory block are included in the same address domain. Each of the first and second memory blocks is accessed by an address signal including an address of the address domain, and the second memory block is a nonvolatile memory.
Abstract:
A memory module includes a memory device, a command/address buffering device, and a processing data buffer. The memory device includes a memory cell array, a first set of input/output terminals, each terminal configured to receive first command/address bits, and a second set of input/output terminals, each terminal configured to receive both data bits and second command/address bits. The command/address buffering device is configured to output the first command/address bits to the first set of input/output terminals. The processing data buffer is configured to output the data bits and second command/address bits to the second set of input/output terminals. The memory device is configured such that the first command/address bits, second command/address bits, and data bits are all used to access the memory cell array.
Abstract:
Provided are a method and an apparatus for repairing a memory cell in a memory test system. A test device detects a fail address by testing a memory device according to a test command, and temporarily stores the fail address in a fail address memory (FAM). The fail address is transmitted to the memory device according to a fail address transmission mode, is temporarily stored in a temporary fail address storage of the memory device, and is then stored in an anti-fuse array, which is a non-volatile storage device. To secure the reliability of data, stored data can be read to verify the data and a verification result can be transmitted in series or in parallel to the test device.
Abstract:
A semiconductor memory device includes a memory cell array configured to store data including a verification code; a sensing unit configured to sense the stored data including the verification code; and a verification unit configured to determine whether the sensing unit is able to sense the stored data based on a sensing condition, wherein the verification unit is configured to determine whether the sensing unit is able to sense the stored data based on the sensing condition and a value of the verification code sensed by the sensing unit.
Abstract:
A semiconductor memory device includes a memory cell array, a repair control circuit and a refresh control circuit. The memory cell array includes a plurality of memory cells and a plurality of redundancy memory cells. The repair control circuit receives a repair command and performs a repair operation on a first defective memory cell among the plurality of memory cells during a repair mode. The semiconductor memory device may operate in a repair mode in response to the repair command. The refresh control circuit performs a refresh operation on non-defective ones of the plurality of memory cells during the repair mode.