Abstract:
An image sensor includes; a photoelectric conversion element disposed on a substrate, a fence structure disposed on the substrate and including a low refractive index layer stacked on a barrier layer, wherein the barrier layer includes at least one metal, and a color filter disposed inwardly lateral with respect to a sidewall of the fence structure, wherein the barrier layer includes an inward lateral protrusion.
Abstract:
A semiconductor device may include: a first semiconductor layer having a first band gap; a second semiconductor layer including first and second regions separately disposed on an upper surface of the first semiconductor layer and having a second band gap wider than the first band gap; and a third semiconductor layer disposed between the first and second regions of the second semiconductor layer, extending up to at least a portion of the first semiconductor layer. The third semiconductor layer may have a channel region doped with an impurity.
Abstract:
Disclosed are semiconductor devices and methods of manufacturing the same. The semiconductor device includes active portions defined in a semiconductor substrate, a device isolation pattern in a trench formed between the active portions, a gate electrode in a gate recess region crossing the active portions and the device isolation pattern, a gate dielectric layer between the gate electrode and an inner surface of the gate recess region, and a first ohmic pattern and a second ohmic pattern on each of the active portions at both sides of the gate electrode, respectively. The first and second ohmic patterns include a metal-semiconductor compound, and a top surface of the device isolation pattern at both sides of the gate recess region is recessed to be lower than a level of a top surface of the semiconductor substrate.
Abstract:
A method of fabricating a semiconductor device includes forming a linear preliminary mask pattern in a first direction on a substrate. The preliminary mask pattern is patterned to provide a plurality of mask patterns that are aligned end-to-end with one another on the substrate and are separated by an exposed portion of the substrate between respective facing ends of the plurality of mask patterns. An auxiliary layer is formed to cover at least sidewalls of the facing ends to reduce a size of the exposed portion to provide a reduced exposed portion of the substrate and the reduced exposed portion of the substrate is etched to form a trench defining active patterns in the substrate aligned end-to-end with one another.
Abstract:
A method of fabricating a semiconductor device includes forming a linear preliminary mask pattern in a first direction on a substrate. The preliminary mask pattern is patterned to provide a plurality of mask patterns that are aligned end-to-end with one another on the substrate and are separated by an exposed portion of the substrate between respective facing ends of the plurality of mask patterns. An auxiliary layer is formed to cover at least sidewalls of the facing ends to reduce a size of the exposed portion to provide a reduced exposed portion of the substrate and the reduced exposed portion of the substrate is etched to form a trench defining active patterns in the substrate aligned end-to-end with one another.
Abstract:
A device and method process voice communication service. A mobile terminal device of the present disclosure includes a microphone arranged at one end of a body of the device; a speaker arranged close to the microphone; a transceiver arranged at the other end of the body; a codec including a coder connected to the microphone, a decoder connected to the speaker, and a switch of which one node is connected to one of the coder and the decoder selectively and the other node is connected to the transceiver; and a communication controller which controls the switch to establish a path between the coder and the transceiver and enables the speaker in speakerphone mode.