Abstract:
A magnetic junction usable in a magnetic device is described. The magnetic junction has a free layer, a reference layer, and a nonmagnetic spacer layer between reference and free layers. The free layer is switchable between stable magnetic states when a write current is passed through the magnetic junction. The free layer has a length in a first direction, a width in a second direction perpendicular to the first direction, an exchange stiffness and an aspect ratio equal to the length divided by the width. The aspect ratio is greater than one. The exchange stiffness is not less than 2×10−6 erg/cm.
Abstract:
A magnetic junction usable in a magnetic device and a method for providing the magnetic junction are described. The magnetic junction includes a free layer, a pinned layer and nonmagnetic spacer layer between the free and pinned layers. The free layer is switchable between stable magnetic states when a write current is passed through the magnetic junction. The write current generates joule heating such that the free layer has a switching temperature greater than room temperature. The free layer includes a multilayer that is temperature sensitive and has at least one bilayer. Each bilayer includes first and second layers. The first layer includes an alloy of a magnetic transition metal and a rare earth. The second layer includes a magnetic layer. The multilayer has a room temperature coercivity and a switching temperature coercivity. The switching temperature coercivity is not more than one-half of the room temperature coercivity.
Abstract:
A magnetic junction usable in a magnetic device and a method for providing the magnetic junction are described. The magnetic junction includes a free layer, a pinned layer and nonmagnetic spacer layer between the free and pinned layers. The free layer is switchable between stable magnetic states when a write current is passed through the magnetic junction. The write current generates joule heating such that the free layer has a switching temperature greater than room temperature. The free layer includes a multilayer that is temperature sensitive and has at least one bilayer. Each bilayer includes first and second layers. The first layer includes an alloy of a magnetic transition metal and a rare earth. The second layer includes a magnetic layer. The multilayer has a room temperature coercivity and a switching temperature coercivity. The switching temperature coercivity is not more than one-half of the room temperature coercivity.
Abstract:
A magnetic junction and method for providing the magnetic junction are described. The magnetic junction includes free and pinned layers separated by a nonmagnetic spacer layer. The free layer is switchable between stable magnetic states when a write current is passed through the magnetic junction. The pinned layer has a perpendicular magnetic anisotropy (PMA) energy greater than its out-of-plane demagnetization energy. Providing the pinned layer includes providing a bulk PMA (B-PMA) layer, providing an interfacial PMA (I-PMA) layer on the B-PMA layer and then providing a sacrificial layer that is a sink for a constituent of the first I-PMA layer. An anneal is then performed. The sacrificial layer and part of the first I-PMA layer are removed after the anneal. Additional I-PMA layer(s) are provided after the removing. A remaining part of the first I-PMA layer and the additional I-PMA layer(s) have a thickness of not more than twenty Angstroms.
Abstract:
A magnetic junction usable in a magnetic device is described. The magnetic junction has a free layer, a reference layer, and a nonmagnetic spacer layer between reference and free layers. The free layer is switchable between stable magnetic states when a write current is passed through the magnetic junction. The free layer has a length in a first direction, a width in a second direction perpendicular to the first direction, an exchange stiffness and an aspect ratio equal to the length divided by the width. The aspect ratio is greater than one. The exchange stiffness is not less than 2×10−6 erg/cm.
Abstract:
A magnetic junction usable in a magnetic device and a method for providing the magnetic junction are described. The magnetic junction includes a free layer, a nonmagnetic spacer layer, and a reference layer. The free layer includes at least one of Fe and at least one Fe alloy. Furthermore, the free layer excludes Co. The nonmagnetic spacer layer adjoins the free layer. The nonmagnetic spacer layer residing between reference layer and the free layer. The magnetic junction is configured such that the free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction.
Abstract:
A nonvolatile memory device includes a bottom electrode on a semiconductor substrate, a data storage layer on the bottom electrode, the data storage layer including a transition metal oxide, and a switching layer provided on a top surface and/or a bottom surface of the data storage layer, wherein a bond energy of material included in the switching layer and oxygen is more than a bond energy of a transition metal in the transition metal oxide and oxygen.
Abstract:
A magnetic junction usable in a magnetic device and a method for providing the magnetic junction are described. The magnetic junction includes a free layer, a nonmagnetic spacer layer, and a reference layer. The free layer includes at least one of Fe and at least one Fe alloy. Furthermore, the free layer excludes Co. The nonmagnetic spacer layer adjoins the free layer. The nonmagnetic spacer layer residing between reference layer and the free layer. The magnetic junction is configured such that the free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction.
Abstract:
A magnetic junction and method for providing the magnetic junction are described. The magnetic junction includes free and pinned layers separated by a nonmagnetic spacer layer. The free layer is switchable between stable magnetic states when a write current is passed through the magnetic junction. The pinned layer has a perpendicular magnetic anisotropy (PMA) energy greater than its out-of-plane demagnetization energy. Providing the pinned layer includes providing a bulk PMA (B-PMA) layer, providing an interfacial PMA (I-PMA) layer on the B-PMA layer and then providing a sacrificial layer that is a sink for a constituent of the first I-PMA layer. An anneal is then performed. The sacrificial layer and part of the first I-PMA layer are removed after the anneal. Additional I-PMA layer(s) are provided after the removing. A remaining part of the first I-PMA layer and the additional I-PMA layer(s) have a thickness of not more than twenty Angstroms.
Abstract:
A nonvolatile memory device includes a bottom electrode on a semiconductor substrate, a data storage layer on the bottom electrode, the data storage layer including a transition metal oxide, and a switching layer provided on a top surface and/or a bottom surface of the data storage layer, wherein a bond energy of material included in the switching layer and oxygen is more than a bond energy of a transition metal in the transition metal oxide and oxygen.