Abstract:
An OLED display device includes a substrate including a display region and a pad region, a display structure in the display region on the substrate, and a pad electrode structure in the pad region on the substrate, the pad electrode structure having a first pad electrode on the substrate, a first insulation layer covering opposite lateral portions of the first pad electrode and exposing a portion of an upper surface of the first pad electrode, a second pad electrode on the first pad electrode and on the first insulation layer, the second pad electrode having a step portion where the first pad electrode and the first insulation layer are overlapped, and a third pad electrode on the second pad electrode and on the first insulation layer, the third electrode covering the second pad electrode.
Abstract:
A display apparatus includes: a substrate defining transistor and wiring areas; a thin film transistor in the transistor area and including a gate electrode, an active layer, and source and drain electrodes; an etch prevention layer in the transistor area, absent in the wiring area and covering the active layer, and first and second contact holes defined in the etch prevention layer and through which the active layer is electrically coupled to the source and drain electrodes; a first wiring layer in the wiring area; a first insulating layer which covers the gate electrode and the first wiring layer, and a third contact hole defined in the first insulating layer in the wiring area and exposing the first wiring layer; and a second wiring layer on the first insulating layer and in the wiring area, and electrically coupled to the first wiring layer via the third contact hole.
Abstract:
A method of manufacturing a display substrate includes forming a gate insulation layer on the base substrate on which a gate metal pattern, forming a data metal pattern on the gate insulation layer, sequentially forming a insulation layer and an organic layer on the base substrate on which the data metal pattern is formed, partially exposing the organic layer, developing the organic layer to partially remove the organic layer on the data metal pattern and to expose at least a portion of the protecting layer on the gate metal pattern, forming a common electrode on the organic layer, forming a pixel electrode on the on the organic layer, and forming an insulation layer between the pixel electrode and the common electrode. An etching degree of a data metal may be controlled by controlling a thickness of a remained organic layer to reduce a damage of the data metal.
Abstract:
A display substrate includes an active pattern, a gate electrode, a first insulation layer and a pixel electrode. The active pattern is disposed on a base substrate. The active pattern includes a metal oxide semiconductor. The gate electrode overlaps the active pattern. The first insulation layer covers the gate electrode and the active pattern, and a contact hole is defined in the first insulation layer. The pixel electrode is electrically connected to the active pattern via the contact hole penetrating the first insulation layer. A first angle defined by a bottom surface of the first insulation layer and a sidewall of the first insulation layer exposed by the contact hole is between about 30° and about 50°.
Abstract:
Embodiments of the present invention relate to a thin film transistor and a manufacturing method of a display panel, and include forming a gate line including a gate electrode on a substrate, forming a gate insulating layer on the gate electrode, forming an intrinsic semiconductor on the gate insulating layer, forming an extrinsic semiconductor on the intrinsic semiconductor, forming a data line including a source electrode and a drain electrode on the extrinsic semiconductor, and plasma-treating a portion of the extrinsic semiconductor between the source electrode and the drain electrode to form a protection member and ohmic contacts on respective sides of the protection member. Accordingly, the process for etching the extrinsic semiconductor and forming an inorganic insulating layer for protecting the intrinsic semiconductor may be omitted such that the manufacturing process of the display panel may be simplified, manufacturing cost may be reduced, and productivity may be improved.
Abstract:
A contact portion of wiring and a method of manufacturing the same are disclosed. A contact portion of wiring according to an embodiment includes: a substrate; a conductive layer disposed on the substrate; an interlayer insulating layer disposed on the conductive layer and having a contact hole; a metal layer disposed on the conductive layer and filling the contact hole; and a transparent electrode disposed on the interlayer insulating layer and connected to the metal layer, wherein the interlayer insulating layer includes a lower insulating layer and an upper insulating layer disposed on the lower insulating layer, the lower insulating layer is undercut at the contact hole, and the metal layer fills in the portion where the lower insulating layer is undercut.
Abstract:
A display apparatus includes: a substrate defining transistor and wiring areas; a thin film transistor in the transistor area and including a gate electrode, an active layer, and source and drain electrodes; an etch prevention layer in the transistor area, absent in the wiring area and covering the active layer, and first and second contact holes defined in the etch prevention layer and through which the active layer is electrically coupled to the source and drain electrodes; a first wiring layer in the wiring area; a first insulating layer which covers the gate electrode and the first wiring layer, and a third contact hole defined in the first insulating layer in the wiring area and exposing the first wiring layer; and a second wiring layer on the first insulating layer and in the wiring area, and electrically coupled to the first wiring layer via the third contact hole.
Abstract:
A display substrate may include a substrate and a wiring on the substrate. The wiring may include a metal oxide layer including at least one oxide selected from tantalum (Ta), niobium (Nb), and titanium (Ti), and a metal layer on the metal oxide layer and including copper (Cu), and a thickness of the metal oxide layer may be in a range of about 30 angstroms (Å) to about 50 Å.
Abstract:
An OLED display device includes a substrate including a display region and a pad region, a display structure in the display region on the substrate, and a pad electrode structure in the pad region on the substrate, the pad electrode structure having a first pad electrode on the substrate, a first insulation layer covering opposite lateral portions of the first pad electrode and exposing a portion of an upper surface of the first pad electrode, a second pad electrode on the first pad electrode and on the first insulation layer, the second pad electrode having a step portion where the first pad electrode and the first insulation layer are overlapped, and a third pad electrode on the second pad electrode and on the first insulation layer, the third electrode covering the second pad electrode.
Abstract:
A display substrate includes a base substrate, a common line on the base substrate, a first insulation layer covering the common line and having a first insulating material, a conductive pattern on the first insulation layer and including a source electrode and a drain electrode, a second insulation layer covering the drain electrode and the common line, and including a lower second insulation layer having a second insulating material and an upper second insulation layer having the first insulating material, a first electrode electrically connected to the drain electrode through a first contact hole in the second insulation layer, and a second electrode electrically connected to the common line through a second contact hole in the first and second insulation layers. The upper and lower second insulation layers on the drain electrode have a first hole and a second hole respectively that form the first contact hole.