Abstract:
A substrate including gate wirings including a gate line and a gate electrode disposed on a substrate, an oxide semiconductor layer pattern overlapping the gate electrode, a gate insulating layer disposed between the gate wirings and the oxide semiconductor layer pattern, data wirings including a data line crossing the gate line, a source electrode connected to one side of the oxide semiconductor layer pattern, and a drain electrode connected to another side of the oxide semiconductor layer, and an insulating pattern including a first portion which is disposed between the gate line and the data line and at least partially overlaps with both of the gate line and the data line.
Abstract:
A method of manufacturing a thin film transistor (TFT) array substrate includes forming a gate line and a gate electrode on a substrate, forming a gate-insulating layer and an oxide semiconductor layer on the gate line and the gate electrode, forming etch stop patterns at a thin-film transistor area and an area where the gate line and the data line overlap each other, forming a data conductor on the oxide semiconductor layer and the etch stop patterns, the data conductor comprising a source electrode and a drain electrode that constitute a TFT together with the gate electrode, and forming a data line extending in a direction intersecting the gate line.
Abstract:
A TFT array substrate includes a semiconductive oxide layer disposed on an insulating substrate and including a channel portion, a gate electrode overlapping the semiconductive oxide layer, a gate insulating layer interposed between the semiconductive oxide layer and the gate electrode, and a passivation layer disposed on the semiconductive oxide layer and the gate electrode. At least one of the gate insulating layer and the passivation layer includes an oxynitride layer, and the oxynitride layer has a higher concentration of oxygen than that of nitrogen in a location of the oxynitride layer closer to the semiconductive oxide layer.
Abstract:
A thin film transistor panel includes an insulating substrate, a gate insulating layer disposed on the insulating substrate, an oxide semiconductor layer disposed on the gate insulating layer, an etch stopper disposed on the oxide semiconductor layer, and a source electrode and a drain electrode disposed on the etch stopper.
Abstract:
A substrate including a gate line and a gate electrode disposed on a substrate, an oxide semiconductor layer pattern overlapping the gate electrode, a gate insulating layer disposed between the gate electrode and the oxide semiconductor layer pattern, a data line intersecting the gate line, a source electrode electrically connected to the oxide semiconductor layer pattern, a drain electrode electrically connected to the oxide semiconductor layer, the drain electrode spaced apart from the source electrode, and an insulating pattern including a first portion, which is disposed between the gate line and the data line and at least partially overlaps with both of the gate line and the data line.
Abstract:
A substrate including gate wirings including gate line and a gate electrode disposed on the substrate, a storage line disposed on the same layer as the gate wirings, a gate insulating layer disposed on the gate wirings and the storage line, an oxide semiconductor layer pattern disposed on the gate insulating layer, data wirings including a data line crossing the gate line, a source electrode disposed on one side of the oxide semiconductor layer pattern, and a drain electrode disposed on another side of the oxide semiconductor layer, and an etch stopper including a first etch stopper portion disposed between the storage line and the data line and partially overlapping both the data line and the storage line.
Abstract:
A TFT array substrate includes a semiconductive oxide layer disposed on an insulating substrate and including a channel portion, a gate electrode overlapping the semiconductive oxide layer, a gate insulating layer interposed between the semiconductive oxide layer and the gate electrode, and a passivation layer disposed on the semiconductive oxide layer and the gate electrode. At least one of the gate insulating layer and the passivation layer includes an oxynitride layer, and the oxynitride layer has a higher concentration of oxygen than that of nitrogen in a location of the oxynitride layer closer to the semiconductive oxide layer.
Abstract:
A Thin Film Transistor (TFT) includes a substrate, a semiconductor layer disposed on the substrate a first source electrode and a first drain electrode spaced apart from each other on the semiconductor layer, a channel area disposed in the semiconductor layer between the first source electrode and the first drain electrode, an etching prevention layer disposed on the channel area, the first source electrode, and the first drain electrode and a second source electrode in contact with the first source electrode, and a second drain electrode in contact with the first drain electrode.
Abstract:
A thin film transistor panel includes an insulating substrate, a gate insulating layer disposed on the insulating substrate, an oxide semiconductor layer disposed on the gate insulating layer, an etch stopper disposed on the oxide semiconductor layer, and a source electrode and a drain electrode disposed on the etch stopper.
Abstract:
A thin film transistor (TFT) array substrate and a manufacturing method thereof are provided. The TFT array substrate may include a gate line disposed on a substrate and including a gate line and a gate electrode, an oxide semiconductor layer pattern disposed on the gate electrode, a data line disposed on the oxide semiconductor layer pattern and including a source electrode and a drain electrode of a thin film transistor (TFT) together with the gate electrode, and a data line extending in a direction intersecting the gate line, and etch stop patterns disposed at an area where the TFT is formed between the source/drain electrodes and the oxide semiconductor layer pattern and at an area where the gate line and the data line overlap each other between the gate line and the data line.