Abstract:
A cleaning solution and a method for manufacturing a display device, the cleaning solution including about 2 wt % to about 12 wt % of nitric acid; about 0.5 wt % to about 15 wt % of an organic acid; about 0.1 wt % to about 10 wt % of a salt compound; about 0.01 wt % to about 3 wt % of an inorganic salt that includes fluorine; and a balance of water, all amounts being based on a total weight of the cleaning solution.
Abstract:
A wet etching composition usable for etching a copper-based wiring layer includes between about 40% by weight to about 60% by weight of phosphoric acid, between about 1% by weight to about 10% by weight of nitric acid, between about 3% by weight to about 15% by weight of acetic acid, between about 0.01% by weight to about 0.1% by weight of a copper-ion compound, between about 1% by weight to about 10% by weight of a nitric salt, between about 1% by weight to about 10% by weight of an acetic salt, and a remainder of water
Abstract:
A method of manufacturing a display device in a chamber in which a material including yttrium is coated on an inner surface includes: forming a first layer pattern by dry etching on a substrate; depositing a second layer material on the first layer pattern; forming a photoresist pattern on the second layer material; completing a second layer pattern by using the photoresist pattern as an etch mask; and performing an additional acid etching process by using an etching solution including at least one of hydrochloric acid, sulfuric acid, or nitric acid before the forming of the photoresist pattern on the second layer material after the dry etching to form the first layer pattern.
Abstract:
A liquid crystal display includes: a substrate; a gate line and a data line disposed on the substrate; a semiconductor layer disposed on the substrate; first and second field generating electrodes disposed on the substrate; and a first protecting layer formed from the same layer as the first field generating electrode and covering at least a portion of the data line.
Abstract:
A metal wire etchant including persulfate, a sulfonate, a fluorine compound, an azole-based compound, an organic acid, a nitrate, and a chlorine compound, and a method of making the same.
Abstract:
Embodiments provide an etchant composition that includes about 5.0 to about 20.0 wt % of a persulfate, about 0.01 to about 15.0 wt % of a sulfonic acid, about 0.01 to about 2.0 wt % of a fluorine compound, about 0.01 to about 5.0 wt % of a 4-nitrogen cyclic compound, about 0.01 to about 1.0 wt % of an amino acid including a hydrophobic group having at least two carbon atoms, and water A weight ratio of the amino acid to the 4-nitrogen cyclic compound is in a range of about 1:16 to about 1:60.
Abstract:
A etchant composition that includes, based on a total weight of the etchant composition, about 0.5 wt % to about 20 wt % of a persulfate, about 0.5 wt % to about 0.9 wt % of an ammonium fluoride, about 1 wt % to about 10 wt % of an inorganic acid, about 0.5 wt % to about 5 wt % of a cyclic amine compound, about 0.1 wt % to about 10.0 wt % of a sulfonic acid, about 5 wt % to about 10 wt % of an organic acid or a salt thereof, and a remainder of water. The etchant composition may be configured to etch a metal layer including copper and titanium, to form a metal wire that may be included in a thin film transistor array panel of a display device.
Abstract:
An input sensor of a display device includes: a sensing electrode on a base insulating layer and overlapping a sensing region; and a signal line electrically connected to the sensing electrode and overlapping the non-sensing region, and including: a first conductive layer on the base insulating layer and having a first reflectance, a first conductivity, and a first thickness; a second conductive layer having a second reflectance lower than the first reflectance, a second conductivity lower than the first conductivity, and a second thickness smaller than the first thickness, wherein the second conductive layer is on and in contact with the first conductive layer; and a third conductive layer between the base insulating layer and the first conductive layer, in contact with each of the base insulating layer and the first conductive layer, wherein the third conductive layer contains a material different from that of the second conductive layer.
Abstract:
A liquid crystal display includes a first substrate, a gate line which includes a gate electrode, a gate insulating layer, a semiconductor stripe layer which is separated from the gate line in a plan view, a semiconductor island, a data line, a source electrode and a drain electrode, an interlayer insulating layer in which a data line exposure hole which exposes a part of the data line is defined, a connecting member which is disposed on the interlayer insulating layer and is connected to the data lines which are disposed on and below the gate line through the data line exposure hole in plan view; and a pixel electrode which is disposed on the interlayer insulating layer and is separated from the connecting member, where the connecting member is directly connected to the source electrode and the pixel electrode is directly connected to the drain electrode.
Abstract:
A thin film transistor array panel includes: a gate line on a substrate and including a gate electrode; a first gate insulating layer on the substrate and the gate line, the first gate insulting layer including a first portion adjacent to the gate line and a second portion overlapping the gate line and having a smaller thickness than that of the first portion; a second gate insulating layer on the first gate insulating layer; a semiconductor layer on the second gate insulating layer; a source electrode and a drain electrode spaced apart from each other on the semiconductor layer; a passivation layer on the second gate insulating layer, the source electrode and the drain electrode; and a pixel electrode on the passivation layer and connected with the drain electrode. The first gate insulating layer and the second gate insulating layer have stress in opposite directions from each other.