Abstract:
A semiconductor substrate and a fabrication method thereof, and a semiconductor apparatus using the same and a fabrication method thereof are provided. The semiconductor substrate includes a semiconductor wafer, a silicon germanium (SiGe)-based impurity doping region formed on the semiconductor wafer, and a protection layer formed on the SiGe-based impurity doping region.
Abstract:
The semiconductor apparatus includes a semiconductor substrate, an insulating layer formed in the semiconductor substrate to be spaced from a surface of the semiconductor substrate by a predetermined depth and formed to extend to a first direction to have a predetermined width, and an active region formed to be in contact with the semiconductor substrate below the insulating layer through a source post that is formed to vertically penetrate a predetermined portion of the insulating layer, and formed on the insulating layer and the source post to extend to the first direction to have a predetermined width.
Abstract:
An access device having a reduced height and capable of suppressing leakage current, a method of fabricating the same, and a semiconductor memory device including the same, are provided. The access device may include a stacked structure including a first-type semiconductor layer having a first dopant, a second-type semiconductor layer having a second dopant, and a third-type semiconductor layer. A first counter-doping layer, having a counter-dopant to the first dopant, is interposed between the first-type semiconductor layer and the third-type semiconductor layer. A second counter-doping layer, having a counter-dopant to the second dopant, is interposed between the third-type semiconductor layer and the second-type semiconductor layer.
Abstract:
A resistive memory device and a fabrication method thereof are provided. The resistive memory device includes a variable resistive layer formed on a semiconductor substrate in which a bottom structure is formed, a lower electrode formed on the variable resistive layer, a switching unit formed on the lower electrode, and an upper electrode formed on the switching unit.
Abstract:
A semiconductor substrate and a fabrication method thereof, and a semiconductor apparatus using the same and a fabrication method thereof are provided. The semiconductor substrate includes a semiconductor wafer, a silicon germanium (SiGe)-based impurity doping region formed on the semiconductor wafer, and a protection layer formed on the SiGe-based impurity doping region.
Abstract:
A PCRAM device and a method of manufacturing the same are provided. The PCRAM device includes a semiconductor substrate, and a PN diode formed on the semiconductor substrate and including a layer interposed therein to suppress thermal diffusion of ions.
Abstract:
An access device having a reduced height and capable of suppressing leakage current, a method of fabricating the same, and a semiconductor memory device including the same, are provided. The access device may include a stacked structure including a first-type semiconductor layer having a first dopant, a second-type semiconductor layer having a second dopant, and a third-type semiconductor layer. A first counter-doping layer, having a counter-dopant to the first dopant, is interposed between the first-type semiconductor layer and the third-type semiconductor layer. A second counter-doping layer, having a counter-dopant to the second dopant, is interposed between the third-type semiconductor layer and the second-type semiconductor layer.
Abstract:
A semiconductor device and a fabrication method thereof are provided. The semiconductor device includes a first type semiconductor layer doped with an N type ion, a second type semiconductor layer formed over the first type semiconductor layer, and a silicon germanium (SiGe) layer doped with a P type ion formed over the second type semiconductor layer.