Abstract:
Embodiments of the present invention provide a semiconductor device capable of reducing parasitic capacitance between neighboring conductive lines and a method for fabricating the same. According to an embodiment of the present invention, a semiconductor device comprises: a conductive line formed over a substrate; and a multi-layered spacer covering both sidewalls of the conductive line, wherein the multi-layered spacer is stacked in the order of a diffusion barrier material, boron nitride layer, and an antioxidant material.
Abstract:
An access device having a reduced height and capable of suppressing leakage current, a method of fabricating the same, and a semiconductor memory device including the same, are provided. The access device may include a stacked structure including a first-type semiconductor layer having a first dopant, a second-type semiconductor layer having a second dopant, and a third-type semiconductor layer. A first counter-doping layer, having a counter-dopant to the first dopant, is interposed between the first-type semiconductor layer and the third-type semiconductor layer. A second counter-doping layer, having a counter-dopant to the second dopant, is interposed between the third-type semiconductor layer and the second-type semiconductor layer.
Abstract:
An access device having a reduced height and capable of suppressing leakage current, a method of fabricating the same, and a semiconductor memory device including the same, are provided. The access device may include a stacked structure including a first-type semiconductor layer having a first dopant, a second-type semiconductor layer having a second dopant, and a third-type semiconductor layer. A first counter-doping layer, having a counter-dopant to the first dopant, is interposed between the first-type semiconductor layer and the third-type semiconductor layer. A second counter-doping layer, having a counter-dopant to the second dopant, is interposed between the third-type semiconductor layer and the second-type semiconductor layer.