Abstract:
A semiconductor package includes a build-up structure; a semiconductor disposed on the build-up structure in a flip-chip manner and having a plurality of bumps penetrating therethrough; an electronic element disposed on the semiconductor chip; and an encapsulant formed on the build-up structure and encapsulating the semiconductor chip and the electronic element, thereby improving the product yield and the overall heat dissipating efficiency.
Abstract:
An electronic module is provided, including an electronic element and a strengthening layer formed on a side surface of the electronic element but not formed on an active surface of the electronic element so as to strengthen the structure of the electronic module. Therefore, the electronic element is prevented from being damaged when the electronic module is picked and placed.
Abstract:
An electronic package is provided, which includes: a first circuit structure; a plurality of first electronic elements disposed on a surface of the first circuit structure; at least a first conductive element formed on the surface of the first circuit structure; and a first encapsulant formed on the surface of the first circuit structure and encapsulating the first electronic elements and the first conductive element, with a portion of the first conductive element exposed from the first encapsulant. By directly disposing the electronic elements having high I/O functionality on the circuit structure, the present disclosure eliminates the need of a packaging substrate having a core layer, thereby reducing the thickness of the electronic package. The present disclosure further provides a method for fabricating the electronic package.
Abstract:
A semiconductor package includes a build-up structure; a semiconductor disposed on the build-up structure in a flip-chip manner and having a plurality of bumps penetrating therethrough; an electronic element disposed on the semiconductor chip; and an encapsulant formed on the build-up structure and encapsulating the semiconductor chip and the electronic element, thereby improving the product yield and the overall heat dissipating efficiency.
Abstract:
A substrate structure is provided, which includes a substrate body having a plurality of conductive pads, and a plurality of first conductive bumps and a plurality of second conductive bumps disposed on the conductive pads. Each of the second conductive bumps is less in width than each of the first conductive bumps, and is of a height with respect to the substrate body greater than a height of each of the first conductive bumps with respect to the substrate body. Therefore, the height difference between the first pre-solder layer and the second pre-solder layer after a reflow process can be compensated, and the first conductive bumps and the second conductive bumps thus have a uniform height.
Abstract:
A semiconductor package includes a build-up structure; a semiconductor disposed on the build-up structure in a flip-chip manner and having a plurality of bumps penetrating therethrough; an electronic element disposed on the semiconductor chip; and an encapsulant formed on the build-up structure and encapsulating the semiconductor chip and the electronic element, thereby improving the product yield and the overall heat dissipating efficiency.
Abstract:
An interposer is provided which includes: a substrate having a first surface with a plurality of first conductive pads and a second surface opposite to the first surface, the second surface having a plurality of second conductive pads; a plurality of conductive through holes penetrating the first and second surfaces of the substrate and electrically connecting the first and second conductive pads; and a first removable electrical connection structure formed on the first surface and electrically connecting a portion of the first conductive pads so as to facilitate electrical testing of the interposer.
Abstract:
An electronic package is provided, which includes: a first circuit structure; a plurality of first electronic elements disposed on a surface of the first circuit structure; at least a first conductive element formed on the surface of the first circuit structure; and a first encapsulant formed on the surface of the first circuit structure and encapsulating the first electronic elements and the first conductive element, with a portion of the first conductive element exposed from the first encapsulant. By directly disposing the electronic elements having high I/O functionality on the circuit structure, the present disclosure eliminates the need of a packaging substrate having a core layer, thereby reducing the thickness of the electronic package. The present disclosure further provides a method for fabricating the electronic package.
Abstract:
An interposer is provided which includes: a substrate having a first surface with a plurality of first conductive pads and a second surface opposite to the first surface, the second surface having a plurality of second conductive pads; a plurality of conductive through holes penetrating the first and second surfaces of the substrate and electrically connecting the first and second conductive pads; and a first removable electrical connection structure formed on the first surface and electrically connecting a portion of the first conductive pads so as to facilitate electrical testing of the interposer.
Abstract:
A semiconductor package includes a build-up structure; a semiconductor disposed on the build-up structure in a flip-chip manner and having a plurality of bumps penetrating therethrough; an electronic element disposed on the semiconductor chip; and an encapsulant formed on the build-up structure and encapsulating the semiconductor chip and the electronic element, thereby improving the product yield and the overall heat dissipating efficiency.