Abstract:
In a method and apparatus for analyzing nodes of a Deterministic Finite Automata (DFA), an accessibility ranking, based on a DFA graph geometrical configuration, may be determined in order to determine cacheable portions of the DFA graph in order to reduce the number of external memory accesses. A walker process may be configured to walk the graph in a graph cache as well as main memory. The graph may be generated in a manner allowing each arc to include information if the node it is pointing to is stored in the graph cache or in main memory. The walker may use this information to determine whether or not to access the next arc in the graph cache or in main memory.
Abstract:
In a method and apparatus for analyzing nodes of a Deterministic Finite Automata (DFA), an accessibility ranking, based on a DFA graph geometrical configuration, may be determined in order to determine cacheable portions of the DFA graph in order to reduce the number of external memory accesses. A walker process may be configured to walk the graph in a graph cache as well as main memory. The graph may be generated in a manner allowing each arc to include information if the node it is pointing to is stored in the graph cache or in main memory. The walker may use this information to determine whether or not to access the next arc in the graph cache or in main memory.
Abstract:
In a method and apparatus for analyzing nodes of a Deterministic Finite Automata (DFA), an accessibility ranking, based on a DFA graph geometrical configuration, may be determined in order to determine cacheable portions of the DFA graph in order to reduce the number of external memory accesses. A walker process may be configured to walk the graph in a graph cache as well as main memory. The graph may be generated in a manner allowing each arc to include information if the node it is pointing to is stored in the graph cache or in main memory. The walker may use this information to determine whether or not to access the next arc in the graph cache or in main memory.
Abstract:
In a method and apparatus for analyzing nodes of a Deterministic Finite Automata (DFA), an accessibility ranking, based on a DFA graph geometrical configuration, may be determined in order to determine cacheable portions of the DFA graph in order to reduce the number of external memory accesses. A walker process may be configured to walk the graph in a graph cache as well as main memory. The graph may be generated in a manner allowing each arc to include information if the node it is pointing to is stored in the graph cache or in main memory. The walker may use this information to determine whether or not to access the next arc in the graph cache or in main memory.
Abstract:
An improved content search mechanism uses a graph that includes intelligent nodes avoids the overhead of post processing and improves the overall performance of a content processing application. An intelligent node is similar to a node in a DFA graph but includes a command. The command in the intelligent node allows additional state for the node to be generated and checked. This additional state allows the content search mechanism to traverse the same node with two different interpretations. By generating state for the node, the graph of nodes does not become exponential. It also allows a user function to be called upon reaching a node, which can perform any desired user tasks, including modifying the input data or position.
Abstract:
Disclosed are systems and methods for protecting secret device keys, such as High-bandwidth Digital Content Protection (HDCP) device keys. Instead of storing secret device keys in the plain, a security algorithm and one or more protection keys are stored on the device. The security algorithm is applied to the secret device keys and the one or more protection keys to produce encrypted secret device keys. The encrypted secret device keys are then stored either on chip or off-chip.
Abstract:
In a multi-core processor, a high-speed interrupt-signal interconnect allows more than one of the processors to be interrupted at substantially the same time. For example, a global signal interconnect is coupled to each of the multiple processors, each processor being configured to selectively provide an interrupt signal, or pulse thereon. Preferably, each of the processor cores is capable of pulsing the global signal interconnect during every clock cycle to minimize delay between a triggering event and its respective interrupt signal. Each of the multiple processors also senses, or samples the global signal interconnect, preferably during the same cycle within which the pulse was provided, to determine the existence of an interrupt signal. Upon sensing an interrupt signal, each of the multiple processors responds to it substantially simultaneously. For example, an interrupt signal sampled by each of the multiple processors causes each processor to invoke a debug handler routine.
Abstract:
An improved content search mechanism uses a graph that includes intelligent nodes avoids the overhead of post processing and improves the overall performance of a content processing application. An intelligent node is similar to a node in a DFA graph but includes a command. The command in the intelligent node allows additional state for the node to be generated and checked. This additional state allows the content search mechanism to traverse the same node with two different interpretations. By generating state for the node, the graph of nodes does not become exponential. It also allows a user function to be called upon reaching a node, which can perform any desired user tasks, including modifying the input data or position.
Abstract:
Disclosed are systems and methods for protecting secret device keys, such as High-bandwidth Digital Content Protection (HDCP) device keys. Instead of storing secret device keys in the plain, a security algorithm and one or more protection keys are stored on the device. The security algorithm is applied to the secret device keys and the one or more protection keys to produce encrypted secret device keys. The encrypted secret device keys are then stored either on chip or off-chip.