Abstract:
A method of manufacturing a semiconductor device with NMOS and PMOS transistors is provided. The semiconductor device can lessen a short channel effect, can reduce gate-drain current leakage, and can reduce parasitic capacitance due to gate overlaps, thereby inhibiting a reduction in the operating speed of circuits. An N-type impurity such as arsenic is ion implanted to a relatively low concentration in the surface of a silicon substrate (1) in a low-voltage NMOS region (LNR) thereby to form extension layers (61). Then, a silicon oxide film (OX2) is formed to cover the whole surface of the silicon substrate (1). The silicon oxide film (OX2) on the side surfaces of gate electrodes (51-54) is used as an offset sidewall. Then, boron is ion implanted to a relatively low concentration in the surface of the silicon substrate (1) in a low-voltage PMOS region (LPR) thereby to form P-type impurity layers (621) later to be extension layers (62).
Abstract:
A semiconductor device including an element isolation in a trench formed in an upper surface of a semiconductor substrate, a trench isolation including a void in a trench directly under the element isolation, and a Cu wire with Cu ball connected to a pad on the semiconductor substrate, is formed. The semiconductor device has a circular trench isolation arrangement prohibition region that overlaps the end portion of the Cu ball in plan view, and the trench isolation is separated from the trench isolation arrangement prohibition region in plan view.
Abstract:
A gate insulating film and a gate electrode of non-single crystalline silicon for forming an nMOS transistor are provided on a silicon substrate. Using the gate electrode as a mask, n-type dopants having a relatively large mass number (70 or more) such as As ions or Sb ions are implanted, to form a source/drain region of the nMOS transistor, whereby the gate electrode is amorphized. Subsequently, a silicon oxide film is provided to cover the gate electrode, at a temperature which is less than the one at which recrystallization of the gate electrode occurs. Thereafter, thermal processing is performed at a temperature of about 1000° C., whereby high compressive residual stress is exerted on the gate electrode, and high tensile stress is applied to a channel region under the gate electrode. As a result, carrier mobility of the nMOS transistor is enhanced.
Abstract:
Provided are a semiconductor device having a high breakdown voltage and attaining the restraint of the action of a parasite bipolar transistor, and a method for producing the device. A high-breakdown-voltage p-channel-type transistor included in the semiconductor device has a first n-type semiconductor layer arranged in a semiconductor substrate and at a main-surface-side (upside) of a p-type region in the semiconductor substrate, and a local n-type buried region arranged just below a first p-type dopant region to contact the first n-type semiconductor layer.
Abstract:
A gate insulating film and a gate electrode of non-single crystalline silicon for forming an nMOS transistor are provided on a silicon substrate. Using the gate electrode as a mask, n-type dopants having a relatively large mass number (70 or more) such as As ions or Sb ions are implanted, to form a source/drain region of the nMOS transistor, whereby the gate electrode is amorphized. Subsequently, a silicon oxide film is provided to cover the gate electrode, at a temperature which is less than the one at which recrystallization of the gate electrode occurs. Thereafter, thermal processing is performed at a temperature of about 1000° C., whereby high compressive residual stress is exerted on the gate electrode, and high tensile stress is applied to a channel region under the gate electrode. As a result, carrier mobility of the nMOS transistor is enhanced.
Abstract:
A semiconductor device in which a reliable high voltage p-channel transistor is formed without an increase in cost and the number of manufacturing steps. The transistor includes: a semiconductor substrate having a main surface and a p-type region therein; a p-type well region located over the p-type region and in the main surface, having a first p-type impurity region to obtain a drain electrode; an n-type well region adjoining the p-type well region along the main surface and having a second p-type impurity region to obtain a source electrode; a gate electrode between the first and second p-type impurity regions along the main surface; and a p-type buried channel overlying the n-type well region and extending along the main surface. The border between the n-type and p-type well regions is nearer to the first p-type impurity region than the gate electrode end near to the first p-type impurity region.
Abstract:
A method of manufacturing a semiconductor device with NMOS and PMOS transistors is provided. The semiconductor device can lessen a short channel effect, can reduce gate-drain current leakage, and can reduce parasitic capacitance due to gate overlaps, thereby inhibiting a reduction in the operating speed of circuits. An N-type impurity such as arsenic is ion implanted to a relatively low concentration in the surface of a silicon substrate (1) in a low-voltage NMOS region (LNR) thereby to form extension layers (61). Then, a silicon oxide film (OX2) is formed to cover the whole surface of the silicon substrate (1). The silicon oxide film (OX2) on the side surfaces of gate electrodes (51-54) is used as an offset sidewall. Then, boron is ion implanted to a relatively low concentration in the surface of the silicon substrate (1) in a low-voltage PMOS region (LPR) thereby to form P-type impurity layers (621) later to be extension layers (62).
Abstract:
A gate insulating film and a gate electrode of non-single crystalline silicon for forming an nMOS transistor are provided on a silicon substrate. Using the gate electrode as a mask, n-type dopants having a relatively large mass number (70 or more) such as As ions or Sb ions are implanted, to form a source/drain region of the nMOS transistor, whereby the gate electrode is amorphized. Subsequently, a silicon oxide film is provided to cover the gate electrode, at a temperature which is less than the one at which recrystallization of the gate electrode occurs. Thereafter, thermal processing is performed at a temperature of about 1000° C., whereby high compressive residual stress is exerted on the gate electrode, and high tensile stress is applied to a channel region under the gate electrode. As a result, carrier mobility of the nMOS transistor is enhanced.
Abstract:
A semiconductor device includes a semiconductor substrate, a semiconductor layer, a first insulating film, and a conductive film. The semiconductor layer is formed on the semiconductor substrate. A first trench reaching the semiconductor substrate is formed within the semiconductor layer. The first insulating film is formed on the inner side surface of the first trench such that a portion of the semiconductor substrate is exposed in the first trench. The conductive film is electrically connected with the semiconductor substrate and formed on the inner side surface of the first trench through the first insulating film. In plan view, a first length of the first trench in an extending direction of the first trench is greater than a second length of the first trench in a width direction perpendicular to the extending direction, and equal to or less than 30 μm.
Abstract:
A gate insulating film and a gate electrode of non-single crystalline silicon for forming an nMOS transistor are provided on a silicon substrate. Using the gate electrode as a mask, n-type dopants having a relatively large mass number (70 or more) such as As ions or Sb ions are implanted, to form a source/drain region of the nMOS transistor, whereby the gate electrode is amorphized. Subsequently, a silicon oxide film is provided to cover the gate electrode, at a temperature which is less than the one at which recrystallization of the gate electrode occurs. Thereafter, thermal processing is performed at a temperature of about 1000° C., whereby high compressive residual stress is exerted on the gate electrode, and high tensile stress is applied to a channel region under the gate electrode. As a result, carrier mobility of the nMOS transistor is enhanced.