Abstract:
Methods, systems, and devices for wireless communication are provided for mobility management for wireless communications systems that utilize a flexible bandwidth carrier. Some embodiments include approaches for determining bandwidth information, such as one or more bandwidth scaling factors N and/or flexible bandwidths, at a user equipment (UE), where the bandwidth information may not be signaled to the UE. Embodiments for determining bandwidth information include: random ordered bandwidth scaling factor approaches, delay ordered bandwidth scaling factor approaches, storing bandwidth scaling factor value in UE Neighbor Record approaches, spectrum measurement approaches, spectrum calculation approaches, and/or a priori approaches. Flexible bandwidth carrier systems may utilize spectrum portions that may not be big enough to fit a normal waveform. Flexible bandwidth carrier systems may be generated through dilating, or scaling down, time, frame lengths, bandwidth, or the chip rate of the flexible bandwidth carrier systems with respect to a normal bandwidth carrier system.
Abstract:
Methods, systems, and devices are described for orthogonal modulation of signals using maximal length sequences and Hadamard transforms. Modulation symbols to be transmitted are arranged into sequences indexed from 1 to 2n−1 for some integer n. A constant is added to the beginning of each sequence, which is then multiplied by a Hadamard matrix of size 2n×2n. The resulting sequences will be orthogonal and will have a first value of zero. The first value is discarded, and the sequence are reordered and associated with m-sequences. The signal is then transmitted. A cyclic prefix may also be transmitted. Upon receiving the transmission, a receiver may discard the cyclic prefix or use it for channel equalization. The receiver may then reorder the received signal, insert a zero, apply the 2n×2n Hadamard transform, discard the zero, and order the sequences again according to the index to retrieve the data.
Abstract:
Methods, systems, and devices are described for predicting a current random access transmission power detectable by a base station based on historical transmission power information. In one aspect, a mobile device may access a historical transmission power associated with a current state of the mobile device, with the historical transmission power based on mobility patterns of the mobile device. Based at least in part on the accessed historical transmission power, the mobile device may predict a current random access transmission power of the mobile device, where the predicted current random access transmission power is configured to elicit a random access response from a base station. In one aspect, the techniques described herein may reduce a number of power ramp steps taken by the mobile device during a random access procedure, reduce interference from the mobile device during the random access procedure, or both based on the predicted current random access transmission power.
Abstract:
Methods, systems, and devices are provided that may address problems to enabling a user equipment (UE) in connected mode on a normal bandwidth cell to make inter-frequency measurements on another normal bandwidth cell and a flexible bandwidth cell. Some embodiment utilize a set of compressed mode gap configurations for measuring both normal bandwidth and flexible bandwidth inter-frequency cells with the following modification for flexible bandwidth cells: reducing the coherent length used by the UE; using the same cell search parameters at the UE but modifying the compressed mode gap parameters to accommodate both normal bandwidth and flexible bandwidth cell search; and/or maintaining the compressed mode gap parameters but reducing the search window size during cell search coherent accumulation. Some embodiments may configure separate compressed mode measurements configuration for normal bandwidth and flexible bandwidth measurements.
Abstract:
Methods, systems, and devices for wireless communication are provided for mobility management for wireless communications systems that utilize a flexible bandwidth carrier. Some embodiments include approaches for determining bandwidth information, such as one or more bandwidth scaling factors N and/or flexible bandwidths, at a user equipment (UE), where the bandwidth information may not be signaled to the UE. Embodiments for determining bandwidth information include: random ordered bandwidth scaling factor approaches, delay ordered bandwidth scaling factor approaches, storing bandwidth scaling factor value in UE Neighbor Record approaches, spectrum measurement approaches, spectrum calculation approaches, and/or a priori approaches. Flexible bandwidth carrier systems may utilize spectrum portions that may not be big enough to fit a normal waveform. Flexible bandwidth carrier systems may be generated through dilating, or scaling down, time, frame lengths, bandwidth, or the chip rate of the flexible bandwidth carrier systems with respect to a normal bandwidth carrier system.
Abstract:
Methods, systems, and devices are provided that may enable wireless communications systems that utilize flexible bandwidths to transmit at the same or similar rates as wireless communications systems that utilize normal bandwidths. Some embodiments identify a target rate for a broadcast channel of a first bandwidth carrier system and transmit broadcast information utilizing the target rate. The target rate is higher than a scaled rate that results from scaling the rate for a broadcast channel of a second bandwidth carrier system by a bandwidth scaling factor. The first and second bandwidth carrier systems may be flexible and normal bandwidth carrier systems, respectively. To compensate for the bandwidth scaling and effectively maintain the rate at which information is transmitted in normal bandwidth carrier systems, different optimized schedules for system and master information transmission, different channelization codes and channels, and/or different scaled spreading factors may be identified and utilized.
Abstract:
Methods, systems, and devices for mobility management for wireless communications systems that utilize a flexible bandwidth carrier are provided. Some embodiments include determining and transmitting assistance information to one or more user equipment (UEs) to facilitate mobility management with respect to the flexible bandwidth carrier. Some embodiments include signaling flexible bandwidth carrier information to UEs including, but not limited to: UE-centric approaches, network-centric approaches, network-centric approaches with PLMN, SIB creation approaches, and/or application layer approaches. A flexible bandwidth carrier may involve a wireless communications system that may utilize portions of spectrum that may not fit a normal bandwidth. A flexible bandwidth carrier may be generated with respect to a normal bandwidth carrier through dilating, or scaling down, the time or the chip rate of the flexible bandwidth carrier with respect to the normal bandwidth carrier. Some embodiments may expand a bandwidth for a flexible bandwidth carrier.
Abstract:
Methods, systems, and devices are described for predicting a current random access transmission power detectable by a base station based on historical transmission power information. In one aspect, a mobile device may access a historical transmission power associated with a current state of the mobile device, with the historical transmission power based on mobility patterns of the mobile device. Based at least in part on the accessed historical transmission power, the mobile device may predict a current random access transmission power of the mobile device, where the predicted current random access transmission power is configured to elicit a random access response from a base station. In one aspect, the techniques described herein may reduce a number of power ramp steps taken by the mobile device during a random access procedure, reduce interference from the mobile device during the random access procedure, or both based on the predicted current random access transmission power.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus determines an operational state of a header compressor or a header decompressor by determining a transition between different operational states associated with the header compressor and/or by determining a transition between different operational states associated with the header decompressor. A persistent scheduling mode is changed in response to a change in the operational state of the header compressor. The persistent scheduling mode may be changed by activating uplink persistent scheduling when the operational state of the header compressor changes from a first order state to a second order state, and/or by deactivating the uplink persistent scheduling when the operational state of the header compressor exits the second order state.
Abstract:
A detector in a mobile device receives input from a modem, determines whether the mobile device is indoor or outdoor based on the modem-supplied input, and stores in memory a binary value to indicate an indoor-outdoor state. In some embodiments, the detector extracts a feature from the modem-supplied input, and uses the extracted feature with a statistical classifier, to output an indoor-outdoor state and an associated probability of correctness of the indoor-outdoor state, in other embodiments, the detector determines whether the mobile device is indoor or outdoor based at least on the feature extracted to characterize temporal distribution of the wireless signal, by using a prior value of the state being indoor or outdoor.