Abstract:
Methods, systems, and devices are described for predicting a current random access transmission power detectable by a base station based on historical transmission power information. In one aspect, a mobile device may access a historical transmission power associated with a current state of the mobile device, with the historical transmission power based on mobility patterns of the mobile device. Based at least in part on the accessed historical transmission power, the mobile device may predict a current random access transmission power of the mobile device, where the predicted current random access transmission power is configured to elicit a random access response from a base station. In one aspect, the techniques described herein may reduce a number of power ramp steps taken by the mobile device during a random access procedure, reduce interference from the mobile device during the random access procedure, or both based on the predicted current random access transmission power.
Abstract:
Aspects of the present disclosure provide a method of wireless communication operable at a peer-to-peer (P2P) device, an apparatus, and a computer program product. A first P2P device determines a first interference margin report including a plurality of first interference margins. The first interference margins respectively correspond to a plurality of channels at a plurality of bandwidths. The first P2P device transmits the first interference margin report to a second P2P device. Prior to associating with the second P2P device to form a P2P group, the first P2P device selects at least one of a bandwidth, a channel, or a group owner of the P2P group based on the first interference margin report.
Abstract:
A network node may receive a notification of a capability of a user equipment (UE) to support multiple subscriber identity modules (SIMs). The multiple SIMs may enable the UE to communicate with multiple network nodes. The network node may modify a communication parameter of the network node based on the notification.
Abstract:
Various aspects provide for determining an amount of time for a data packet at a medium access control (MAC) layer of the first apparatus to reach an application layer of a second apparatus, setting a MAC layer lifetime limit of the data packet based on the determined amount of time for the data packet at the MAC layer of the first apparatus to reach the application layer of the second apparatus, and discarding the data packet when the MAC layer lifetime limit of the data packet is reached. The MAC layer lifetime limit of the data packet comprises a duration of time during which the data packet is suitable for transmission. The MAC layer lifetime limit of the data packet may be different from a MAC layer lifetime limit of another data packet associated with an access category that is the same as the access category with which the data packet is associated. Various other aspects are provided.
Abstract:
A user equipment (UE) may determine a capability of the UE to support multiple subscriber identity modules (SIMs). The multiple SIMs may enable the UE to communicate with multiple network nodes. The UE may notify at least one network node of the multiple network nodes of the multiple SIM capability of the UE.
Abstract:
A user equipment may identify one or more trigger factors associated with an assistance mode. The assistance mode may include a second radio associated with a second radio access technology (RAT) assisting a first radio associated with a first RAT. The UE may then measure a frequency offset between a first clock of the first radio and a second clock of the second radio based at least in part on the one or more trigger factors. The first clock may be associated with a first oscillator crystal, and the second clock may be associated with a second oscillator crystal. The UE may then store the frequency offset for use by the first radio and the second radio in the assistance mode.
Abstract:
Methods, systems, and devices are described for predicting a current random access transmission power detectable by a base station based on historical transmission power information. In one aspect, a mobile device may access a historical transmission power associated with a current state of the mobile device, with the historical transmission power based on mobility patterns of the mobile device. Based at least in part on the accessed historical transmission power, the mobile device may predict a current random access transmission power of the mobile device, where the predicted current random access transmission power is configured to elicit a random access response from a base station. In one aspect, the techniques described herein may reduce a number of power ramp steps taken by the mobile device during a random access procedure, reduce interference from the mobile device during the random access procedure, or both based on the predicted current random access transmission power.
Abstract:
Methods, systems, and devices are described for adjusting at least one channel parameter based on accessed historical channel information associated with mobility patterns of a mobile device. In some examples, a mobile device or a base station may access historical channel information associated with mobility patterns of the mobile device or another mobile device. The mobility patterns may include information relative to a particular time and location of a mobile device, a previously traveled route by a mobile device, etc. Based on the historical channel information associated with the mobility patterns, the mobile device or the base station may adjust a channel parameter to improve communication performance across the particular channel.
Abstract:
A method for wireless communication is described. A primary radio frequency integrated circuit (RFIC) supporting a plurality of radio frequency (RF) receive paths is provided. Standalone RF resources of a core-resource RFIC to integrate with the plurality of RF receive paths of the primary RFIC to enable an additional functionality of the primary RFIC are then added. A minimum set of RF resources necessary to add support for an additional RF receive path may be determined, and RF resources, including one or more of an antenna, an RF front end, and a low-noise amplifier (LNA) and switches of the primary RFIC, may be shared. A digital baseband integrated circuit (IC), i.e. a modem, may be operated to support both a first of the plurality of RF receive paths from the primary RFIC and a second of the plurality of RF receive paths from the core-resource RFIC.
Abstract:
Methods, systems, and devices are described for managing wireless communications. In the methods, systems, and devices, historical information associated with mobility patterns of a mobile device may be accessed. A mobility parameter may be modified for at least one neighboring cell of a set of neighboring cells for measurement by the mobile device. The mobility parameter may be modified based on the historical information associated with the mobility patterns of the mobile device.