Abstract:
A first interconnect on an interconnect level connects a first subset of PMOS drains together of a CMOS device. A second interconnect on the interconnect level connects a second subset of the PMOS drains together. The second subset of the PMOS drains is different than the first subset of the PMOS drains. The first interconnect and the second interconnect are disconnected on the interconnect level. A third interconnect on the interconnect level connects a first subset of NMOS drains together of the CMOS device. A fourth interconnect on the interconnect level connects a second subset of the NMOS drains together. The second subset of the NMOS drains is different than the first subset of the NMOS drains. The third interconnect and the fourth interconnect are disconnected on the interconnect level. The first, second, third, and fourth interconnects are coupled together through at least one other interconnect level.
Abstract:
In one example, the apparatus includes a first AND gate, a second AND gate, a first NOR gate, a second NOR gate, a third NOR gate, a first inverter, and a second inverter. The first AND gate output is coupled to the first NOR gate first input. The first NOR gate output is coupled to the second NOR gate first input. The second NOR gate output is coupled to the first NOR gate second input. The first inverter output is coupled to the first AND gate second input and the second NOR gate second input. The second AND gate first input is coupled to the first inverter output. The third NOR gate first input is coupled to the second NOR gate output. The third NOR gate second input is coupled to the second AND gate output. The second inverter output is coupled to the second AND gate second input.
Abstract:
A CMOS device with a plurality of PMOS transistors and a plurality of NMOS transistors includes a first interconnect and a second interconnect on an interconnect level connecting a first subset and a second subset of PMOS drains together, respectively. The first and second subsets are different and the first and second interconnect are disconnected on the interconnect level. A third interconnect and a fourth interconnect on the interconnect level connect a first subset and a second subset of the NMOS drains together, respectively. The third interconnect and the fourth interconnect are disconnected on the interconnect level. The first, second, third, fourth interconnects are coupled together through at least one other interconnect level. Additional interconnects on the interconnect level connect the first and third interconnects together, and the second and fourth interconnects together, to provide parallel current paths with a current path through the at least one other interconnect level.
Abstract:
The apparatus provided includes a memory. The memory is configured to receive a memory clock. The apparatus also includes a single stage logic gate configured to generate the memory clock from a reference clock. The memory clock is a gated clock. Additionally, the memory clock has a wider pulse width than the reference clock. In an example, the single stage logic gate comprises a pull-up circuit configured to pull-up the memory clock, and a pull-down circuit coupled to pull-down the memory clock. In an example, the pull-up and the pull-down circuits are configured to be controlled by the reference clock, a delayed reference clock, and a gating signal. An example further includes a delay circuit configured to generate the delayed reference clock from the reference clock. An example further includes a latch configured to generate the gating signal.
Abstract:
A MOS device may include a first logic component with a first input located on a second track and a first output located on the third track. The MOS device may include a second logic component with a second input located on the fourth track and a second output located on a fifth track. For example, the MOS device includes a first interconnect on a Mx layer that is coupled to the first input on the second track. In another example, the MOS device includes a second interconnect on the Mx layer that is coupled to the first output on the third track. The MOS device includes a third interconnect on a My layer that is coupled to the second input on the fourth track. Still further, the MOS device includes a fourth interconnect on the My layer that is coupled to the second output on the fifth track.
Abstract:
A first interconnect on an interconnect level connects a first subset of PMOS drains together of a CMOS device. A second interconnect on the interconnect level connects a second subset of the PMOS drains together. The second subset of the PMOS drains is different than the first subset of the PMOS drains. The first interconnect and the second interconnect are disconnected on the interconnect level. A third interconnect on the interconnect level connects a first subset of NMOS drains together of the CMOS device. A fourth interconnect on the interconnect level connects a second subset of the NMOS drains together. The second subset of the NMOS drains is different than the first subset of the NMOS drains. The third interconnect and the fourth interconnect are disconnected on the interconnect level. The first, second, third, and fourth interconnects are coupled together though at least one other interconnect level.
Abstract:
A first interconnect on an interconnect level connects a first subset of PMOS drains together of a CMOS device. A second interconnect on the interconnect level connects a second subset of the PMOS drains together. The second subset of the PMOS drains is different than the first subset of the PMOS drains. The first interconnect and the second interconnect are disconnected on the interconnect level. A third interconnect on the interconnect level connects a first subset of NMOS drains together of the CMOS device. A fourth interconnect on the interconnect level connects a second subset of the NMOS drains together. The second subset of the NMOS drains is different than the first subset of the NMOS drains. The third interconnect and the fourth interconnect are disconnected on the interconnect level. The first, second, third, and fourth interconnects are coupled together though at least one other interconnect level.
Abstract:
A CMOS device with a plurality of PMOS transistors each having a PMOS drain and a plurality of NMOS transistors each having an NMOS drain includes a first interconnect and a second interconnect. The first interconnect is on an interconnect level extending in a length direction to connect the PMOS drains together, and the second interconnect is on the interconnect level extending in the length direction to connect the NMOS drains together. A set of interconnects on at least one additional interconnect level physically couple the first interconnect and the second interconnect to an output of the CMOS device. A third interconnect on the interconnect level extends perpendicular to the length direction and offset from the set of interconnects. The third interconnect is capable of flowing current from the PMOS drains or from the NMOS drains to the output of the CMOS device.
Abstract:
A first interconnect on an interconnect level connects a first subset of PMOS drains together of a CMOS device. A second interconnect on the interconnect level connects a second subset of the PMOS drains together. The second subset of the PMOS drains is different than the first subset of the PMOS drains. The first interconnect and the second interconnect are disconnected on the interconnect level. A third interconnect on the interconnect level connects a first subset of NMOS drains together of the CMOS device. A fourth interconnect on the interconnect level connects a second subset of the NMOS drains together. The second subset of the NMOS drains is different than the first subset of the NMOS drains. The third interconnect and the fourth interconnect are disconnected on the interconnect level. The first, second, third, and fourth interconnects are coupled together through at least one other interconnect level.
Abstract:
A CGC includes an enable module and a latch module. The enable module has an enable module input and an enable module output. The latch module has latch module inputs and a latch module output. The latch module inputs include a latch module clock input for receiving a clock and a latch module enable input for receiving the enable module output. The latch module enable input is coupled to the enable module output. The latch module is configured to enable and to disable the clock via the latch module output based on the enable module input. The latch module includes an internal enable node that is the latch module output. The latch module is configured to cause the internal enable node to transition from low to high as a function of the enable module output and ĒC, where E is the internal enable node and C is the clock.