Abstract:
A material stack of a synthetic anti-ferromagnetic (SAF) reference layer of a perpendicular magnetic tunnel junction (MTJ) may include an SAF coupling layer. The material stack may also include and an amorphous spacer layer on the SAF coupling layer. The amorphous spacer layer may include an alloy or multilayer of tantalum and cobalt or tantalum and iron or cobalt and iron and tantalum. The amorphous spacer layer may also include a treated surface of the SAF coupling layer.
Abstract:
A magnetic tunnel junction (MTJ) device includes a pinned layer, a tunnel barrier layer on the pinned layer, and a free layer on the tunnel barrier layer. The MTJ device also includes a perpendicular magnetic anisotropic (PMA) enhancement layer on the free layer, a capping layer on the PMA enhancement layer, and a conductive path electrically shorting the capping layer, the PMA enhancement layer and the free layer. A method of fabricating a perpendicular magnetic tunnel junction (pMTJ) device includes forming a capping layer, a perpendicular magnetic anisotropic (PMA) enhancement layer and a free layer. The method also includes forming a conductive layer to short the capping layer, the PMA enhancement layer and the free layer.
Abstract:
Methods and apparatus relating to spin-orbit-torque magnetoresistive random access memory with voltage-controlled anisotropy are disclosed. In an example, disclosed is a three-terminal magnetic tunnel junction (MTJ) storage element that is programmed via a combination of voltage-controlled magnetic anisotropy (VCMA) and spin-orbit torque (SOT) techniques. Also disclosed is a memory controller configured to program the three-terminal MTJ storage element via VCMA and SOT techniques. The disclosed devices improve efficiency over conventional devices by using less write energy, while having a design that is simpler and more scalable than conventional devices. The disclosed devices also have increased thermal stability without increasing required switching current, as critical switching current between states is essentially the same
Abstract:
A method for fabricating a perpendicular magnetic tunnel junction (pMTJ) device includes growing a seed layer on a first electrode of the pMTJ device. The seed layer has a uniform predetermined crystal orientation along a growth axis. The method also includes planarizing the seed layer while maintaining the uniform predetermined crystal orientation of the seed layer.
Abstract:
Methods and apparatus relating to spin-orbit-torque magnetoresistive random access memory with voltage-controlled anisotropy are disclosed. In an example, disclosed is a three-terminal magnetic tunnel junction (MTJ) storage element that is programmed via a combination of voltage-controlled magnetic anisotropy (VCMA) and spin-orbit torque (SOT) techniques. Also disclosed is a memory controller configured to program the three-terminal MTJ storage element via VCMA and SOT techniques. The disclosed devices improve efficiency over conventional devices by using less write energy, while having a design that is simpler and more scalable than conventional devices. The disclosed devices also have increased thermal stability without increasing required switching current, as critical switching current between states is essentially the same.
Abstract:
A material stack of a synthetic anti-ferromagnetic (SAF) reference layer of a perpendicular magnetic tunnel junction (MTJ) may include an SAF coupling layer. The material stack may also include and an amorphous spacer layer on the SAF coupling layer. The amorphous spacer layer may include an alloy or multilayer of tantalum and cobalt or tantalum and iron or cobalt and iron and tantalum. The amorphous spacer layer may also include a treated surface of the SAF coupling layer.
Abstract:
A method for fabricating a perpendicular magnetic tunnel junction (pMTJ) device includes growing a seed layer on a first electrode of the pMTJ device. The seed layer has a uniform predetermined crystal orientation along a growth axis. The method also includes planarizing the seed layer while maintaining the uniform predetermined crystal orientation of the seed layer.