Abstract:
A signal modulation apparatus, a memory storage apparatus, and a signal modulation method are disclosed. The signal modulation apparatus includes an observation circuit, a signal modulation circuit, and a phase control circuit. The signal modulation circuit is configured to generate a second signal according to a first signal and a reference clock signal. A frequency of the first signal is different from a frequency of the second signal. The phase control circuit is configured to obtain an observation information via the observation circuit. The observation information reflects a process variation of at least one electronic component in the signal modulation apparatus. The phase control circuit is further configured to control an offset between the first signal and the reference clock signal according to the observation information.
Abstract:
A clock and data recovery circuit, a memory storage device and a signal adjustment method are disclosed. The method includes: detecting a phase difference between a first signal and a clock signal; generating a vote signal according to the phase difference and a first clock frequency; sequentially outputting a plurality of adjustment signals according to the vote signal and a second clock frequency, wherein the first clock frequency is different from the second clock frequency; and generating the clock signal according to the sequentially output adjustment signals.
Abstract:
A signal generation circuit is disclosed according to an embodiment of the invention. The signal generation circuit includes a phase control circuit, a bias control circuit and a phase interpolation circuit. The phase control circuit is configured to generate a phase control signal according to a phase adjustment signal. The bias control circuit is configured to generate a bias voltage according to the phase control signal. The phase interpolation circuit is configured to generate a clock signal according to the phase control signal and the bias voltage. The bias voltage is used to adjust a current of the phase interpolation circuit to correct an error of the clock signal.
Abstract:
A signal generation circuit is disclosed according to an embodiment of the invention. The signal generation circuit includes a phase control circuit, a bias control circuit and a phase interpolation circuit. The phase control circuit is configured to generate a phase control signal according to a phase adjustment signal. The bias control circuit is configured to generate a bias voltage according to the phase control signal. The phase interpolation circuit is configured to generate a clock signal according to the phase control signal and the bias voltage. The bias voltage is used to adjust a current of the phase interpolation circuit to correct an error of the clock signal.
Abstract:
A signal calibration circuit including a first phase interpolator, a second phase interpolator, a phase detector, a control circuit and a delay circuit is provided according to an exemplary embodiment of the disclosure. The first phase interpolator is configured to receive a plurality of first signals and generate a plurality of first quadrature signals according to the first signals. The second phase interpolator is configured to generate a second signal according to the first quadrature signals. The phase detector is configured to detect a phase difference between the second signal and one of the first signals. The control circuit is configured to generate a calibration parameter according to the phase difference. The delay circuit is configured to adjust at least one of the first signals according to the calibration parameter, such that the adjusted first signal includes a plurality of second quadrature signals.
Abstract:
An equalizer tuning method for a memory storage device is provided according to an exemplary embodiment of the disclosure. The method includes: receiving a first signal; modulating the first signal by a first modulation circuit according to a first type parameter and modulating the first signal by a second modulation circuit according to a second type parameter; detecting a signal eye-width value and a signal eye-height value of the modulated first signal; and adjusting the first type parameter according to the detected signal eye-width value and adjusting the second type parameter according to the detected signal eye-height value.
Abstract:
A sampling circuit module, a memory control circuit unit, and a data sampling method are provided. The sampling circuit module includes a delay lock loop (DLL) and a sampling circuit. The DLL includes a clock control circuit, a clock delay circuit and a voltage control circuit. The clock control circuit performs a delay lock for a reference clock signal, so as to output a selecting signal. The clock delay circuit delays the reference clock signal according to the selecting signal, so as to output a delay clock signal. The voltage control circuit adjusts a driving voltage outputted to the clock control circuit and the clock delay circuit according to the selecting signal. The sampling circuit samples a data signal according to the delay clock signal. Accordingly, a delay ability of the DLL may be improved by adjusting the driving voltage.
Abstract:
A signal transmission circuit of an electronic device is provided. The electronic device is coupled to a signal reception circuit of a host via the signal transmission circuit. The signal transmission circuit includes a driving circuit module and a signal detection module. The driving circuit module provides at least one initialized signal and a detection signal. The initialized signal is output prior to the detection signal. The signal detection module is coupled to the signal reception circuit via a signal detection terminal. The initialized signal reduces a signal reference level of a reception terminal of the signal reception circuit. The signal detection module determines the type of the transmission interface of the signal reception circuit according to whether the detection signal of the signal detection terminal satisfies a predetermined threshold value. Furthermore, a method for detecting the signal transmission interface is provided.
Abstract:
A retiming circuit module, a signal transmission system, and a signal transmission method are provided. The retiming circuit module includes a path control circuit and a multipath signal transmission circuit. The multipath signal transmission circuit includes built-in first signal transmission path and second signal transmission path. The multipath signal transmission circuit may perform first signal transmission between an upstream device and a downstream device based on a first signal transmission frequency and the second signal transmission path. During a period of performing the first signal transmission, the path control circuit may detect a first data sequence transmitted between the upstream device and the downstream device. The path control circuit may control the multipath signal transmission circuit to switch to perform second signal transmission between the upstream device and the downstream device based on the first signal transmission frequency and the first signal transmission path according to the first data sequence.
Abstract:
A retiming circuit module, a signal transmission system and a signal transmission method are disclosed. The retiming circuit module includes a path control circuit and a multipath signal transmission circuit. The multipath signal transmission circuit includes a plurality of parallel signal transmission paths. The path control circuit is configured to control the multipath signal transmission circuit to perform signal transmission between an upstream device and a downstream device based on a first parallel signal transmission path in the parallel signal transmission paths during a period of a handshake operation performed between the upstream device and the downstream device. The path control circuit is further configured to control the multipath signal transmission circuit to perform the signal transmission based on a second parallel signal transmission path in the parallel signal transmission paths after the handshake operation is finished.