Abstract:
A calibration method of an equalizer circuit for a memory storage device is disclosed. The calibration method includes: receiving a first signal; adjusting, by the equalizer circuit, the first signal according to a control parameter to output a second signal; generating a first sampling signal according to a first reference signal and the second signal, wherein the first sampling signal reflects data transmitted by the first signal; and generating a second sampling signal according to a second reference signal and the second signal and adjusting the control parameter according to the second sampling signal to calibrate the equalizer circuit, wherein a voltage value of the first reference signal is different from a voltage value of the second reference signal.
Abstract:
An equalizer tuning method for a memory storage device is provided according to an exemplary embodiment of the disclosure. The method includes: receiving a first signal; modulating the first signal by a first modulation circuit according to a first type parameter and modulating the first signal by a second modulation circuit according to a second type parameter; detecting a signal eye-width value and a signal eye-height value of the modulated first signal; and adjusting the first type parameter according to the detected signal eye-width value and adjusting the second type parameter according to the detected signal eye-height value.
Abstract:
A data sampling circuit module, a data sampling method and a memory storage device are provided. The method includes: receiving a differential signal and generating a sensing voltage pair according to the differential signal, where the sensing voltage pair includes a first sensing voltage and a second sensing voltage, a voltage value of the first sensing voltage is related to a first differential signal of the differential signal, and a voltage value of the second sensing voltage is related to a second differential signal of the differential signal; and receiving the sensing voltage pair and outputting a sampling data stream according to a clock of the differential signal and a voltage relative relationship of the sensing voltage pair.
Abstract:
A signal re-driving device, a data storage system and a mode control method are provided. The method includes the following steps. A first signal is received via a receiving circuit of the signal re-driving device. An analog signal feature is detected the receiving circuit. A first mode is entered according to the analog signal feature. The first signal is modulated and a second signal is outputted in the first mode. The second signal is sent via a sending circuit of the signal re-driving device. A digital signal feature is detected via the receiving circuit. And, the first mode is switched to a second mode according to the digital signal feature.
Abstract:
An equalizer circuit, a memory storage device and a signal adjustment method are disclosed. The equalizer circuit is configured to receive an input signal, a reference voltage signal and a sensing clock signal and generate an error signal. The equalizer circuit is further configured to generate a first adjustment signal and a second adjustment signal according to the error signal. The equalizer circuit is further configured to update a control code from a first control code to a second control code according to at least one of the first adjustment signal and the second adjustment signal and generate an adjustment control signal according to the control code. The equalizer circuit is further configured to generate a feedback control signal according to the adjustment control signal to restore the control code from the second control code to the first control code.
Abstract:
A signal receiving circuit, a memory storage device and a signal receiving method are provided. The signal receiving circuit includes an equalizer module, a clock and data recovery (CDR) circuit and a controller. The equalizer module is configured to receive a first signal and compensate the first signal to generate a second signal. The CDR circuit is configured to perform a phase locking on the second signal. The controller is configured to open or close a signal pattern filter of the CDR circuit according to the second signal, wherein the signal pattern filter is configured to filter a signal having a specific pattern in the second signal.
Abstract:
An equalizer tuning method for a memory storage device is provided according to an exemplary embodiment of the disclosure. The method includes: receiving a first signal; modulating the first signal by a first modulation circuit according to a first type parameter and modulating the first signal by a second modulation circuit according to a second type parameter; detecting a signal eye-width value and a signal eye-height value of the modulated first signal; and adjusting the first type parameter according to the detected signal eye-width value and adjusting the second type parameter according to the detected signal eye-height value.
Abstract:
A signal modulation method, an adaptive equalizer and a memory storage device are provided. The method includes: receiving a first signal; performing a first modulation on the first signal based on a first power mode to generate a second signal having a first eye-width; performing a second modulation based on a second power mode to generate the second signal having a second eye-width; determining whether the first eye-width and the second eye-width meet a first condition; if yes, performing a third modulation based on the first power mode to generate the second signal having a third eye-width; otherwise, performing the third modulation based on the second power mode to generate the second signal having the third eye-width. Therein, a power consumption of performing the second modulation is less than that of performing the first modulation. Therefore, an efficiency of the adaptive equalizer may be improved.
Abstract:
A signal re-driving device, a data storage system and a mode control method are provided. The method includes the following steps. A first signal is received via a receiving circuit of the signal re-driving device. An analog signal feature is detected the receiving circuit. A first mode is entered according to the analog signal feature. The first signal is modulated and a second signal is outputted in the first mode. The second signal is sent via a sending circuit of the signal re-driving device. A digital signal feature is detected via the receiving circuit. And, the first mode is switched to a second mode according to the digital signal feature.
Abstract:
A retiming circuit module, a signal transmission system and a signal transmission method are disclosed. The retiming circuit module includes a path control circuit and a multipath signal transmission circuit. The multipath signal transmission circuit includes a plurality of parallel signal transmission paths. The path control circuit is configured to control the multipath signal transmission circuit to perform signal transmission between an upstream device and a downstream device based on a first parallel signal transmission path in the parallel signal transmission paths during a period of a handshake operation performed between the upstream device and the downstream device. The path control circuit is further configured to control the multipath signal transmission circuit to perform the signal transmission based on a second parallel signal transmission path in the parallel signal transmission paths after the handshake operation is finished.