Abstract:
The present invention provides methods, compositions and kits for targeted nucleic acid sequence enrichment in a nucleic acid sample and for high efficiency nucleic acid library generation for next generation sequencing (NGS). Specifically, the methods, compositions and kits provided herein are useful for the production and capture of amplification-ready, target-specific and strand-specific regions of interest from nucleic acid samples containing complex DNA.
Abstract:
The present invention provides methods, compositions and kits for the generation of next generation sequencing (NGS) libraries in which non-desired nucleic acid sequences have been depleted or substantially reduced. The methods, compositions and kits provided herein are useful, for example, for the production of libraries from total RNA with reduced ribosomal RNA and for the reduction of common mRNA species in expression profiling from mixed samples where the mRNAs of interest are present at low levels. The methods of the invention can be employed for the elimination of non-desired nucleic acid sequences in a sequence-specific manner, and consequently, for the enrichment of nucleic acid sequences of interest in a nucleic acid library.
Abstract:
Provided herein are methods, compositions and kits for targeted nucleic acid sequence enrichment in a nucleic acid sample and for high efficiency nucleic acid library generation for next generation sequencing (NGS). The methods, compositions and kits provided herein can be useful for the production and capture of amplification-ready, target-specific and strand-specific regions of interest from nucleic acid samples containing complex DNA.
Abstract:
The invention provides methods for isothermal amplification of RNA. The methods are particularly suitable for amplifying a plurality of RNA species in a sample. The methods employ a composite primer, a second primer and strand displacement to generate multiple copies of DNA products comprising sequences complementary to an RNA sequence of interest. In another aspect, the methods employ a single primer (which is a composite primer) and strand displacement to generate multiple copies of DNA products comprising sequences complementary to an RNA sequence of interest. In some embodiments, a transcription step is included to generate multiple copies of sense RNA of an RNA sequence of interest. The methods are useful for preparation of nucleic acid libraries and substrates for analysis of gene expression of cells in biological samples. The invention also provides compositions and kits for practicing the amplification methods, as well as methods which use the amplification products.
Abstract:
The present invention provides methods, compositions and kits for the generation of next generation sequencing (NGS) libraries in which non-desired nucleic acid sequences have been depleted or substantially reduced. The methods, compositions and kits provided herein are useful, for example, for the production of libraries from total RNA with reduced ribosomal RNA and for the reduction of common mRNA species in expression profiling from mixed samples where the mRNAs of interest are present at low levels. The methods of the invention can be employed for the elimination of non-desired nucleic acid sequences in a sequence-specific manner, and consequently, for the enrichment of nucleic acid sequences of interest in a nucleic acid library.
Abstract:
The invention provides methods and compositions, including kits, for the construction of directional nucleic acid libraries. The invention further provides methods and compositions for the amplification and sequencing of directional cDNA libraries.
Abstract:
The invention relates to the field of polynucleotide amplification. More particularly, the invention provides methods, compositions and kits for amplification of (i.e., making multiple copies of) a multiplicity of different polynucleotide template sequences using a randomly primed RNA/DNA composite primer.
Abstract:
The present invention provides methods, compositions and kits for targeted nucleic acid sequence enrichment in a nucleic acid sample and for high efficiency nucleic acid library generation for next generation sequencing (NGS). Specifically, the methods, compositions and kits provided herein are useful for the production and capture of amplification-ready, target-specific and strand-specific regions of interest from nucleic acid samples containing complex DNA.
Abstract:
The invention relates to the field of polynucleotide amplification. More particularly, the invention provides methods, compositions and kits for amplification of (i.e., making multiple copies of) a multiplicity of different polynucleotide template sequences using a randomly primed RNA/DNA composite primer.
Abstract:
Provided herein are methods and compositions for selective amplification of nucleic acids. The compositions include oligonucleotides with sequence features that allow simultaneous, parallel amplification of multiple targets from a mixture of nucleic acids in a single reaction. Methods of using such oligonucleotides to identify individual targets and create libraries of targets from mixtures of nucleic acids are also provided.