摘要:
When a two-division structure heat treatment jig for semiconductor substrate that includes a silicon first jig that comes into direct contact with a semiconductor substrate that is heat treated and supports the semiconductor substrate, and a second jig (holder) that holds the first jig and is mounted on a heat treatment boat is adopted as a heat treatment boat of a vertical heat treatment furnace, the stress concentrated during the heat treatment on a particular portion of the semiconductor substrate can be reduced; in the case of a semiconductor substrate large in the tare stress and having an outer shape of 300 mm being heat treated, or even in the case of the heat treatment being carried out under very high temperature conditions, the slips can be suppressed from occurring. The present invention can be widely applied as a stable heat treatment method of semiconductor substrates.
摘要:
When a two-division structure heat treatment jig for semiconductor substrate that includes a silicon first jig that comes into direct contact with a semiconductor substrate that is heat treated and supports the semiconductor substrate, and a second jig (holder) that holds the first jig and is mounted on a heat treatment boat is adopted as a heat treatment boat of a vertical heat treatment furnace, the stress concentrated during the heat treatment on a particular portion of the semiconductor substrate can be reduced; in the case of a semiconductor substrate large in the tare stress and having an outer shape of 300 mm being heat treated, or even in the case of the heat treatment being carried out under very high temperature conditions, the slips can be suppressed from occurring. The present invention can be widely applied as a stable heat treatment method of semiconductor substrates.
摘要:
A method for producing a high-resistance SIMOX wafer wherein oxygen diffused inside of a wafer by the heat treatment at a high temperature in an oxidizing atmosphere can be reduced to suppress the occurrence of thermal donor. In one embodiment, a heating-rapid cooling treatment is conducted after the heat treatment at a high temperature in an oxidizing atmosphere to implant vacancies from a surface of a wafer into an interior thereof to thereby easily precipitate oxygen diffused inside the wafer during the heat treatment.
摘要:
It is possible to efficiently capture heavy metal contamination due to ion implantation or high-temperature heat treatment in a bulk layer. It is characterized that the present method comprises: a step of implanting oxygen ions into a wafer 11; a step of applying first heat treatment to a wafer under a predetermined gas atmosphere at 1,300 to 1,390° C. and forming a buried oxide layer 12 and an SOI layer 13 by applying first heat treatment to a wafer at 1,300 to 1390° C.; a second heat treatment step in which a wafer before oxygen ions are implanted has an oxygen concentration of 9×1017 to 1.8×1018 atoms/cm3 (old ASTM) and a buried oxide layer is formed entirely or locally in the wafer to form oxygen precipitate nuclei 14b formed in the wafer before the oxygen ion implantation step or between the oxygen ion implantation step and the first heat treatment step; and a third heat treatment step of growing oxygen precipitate nuclei 14b formed in the wafer so as to be oxygen precipitates 14c.
摘要翻译:可以有效地捕获在体层中由于离子注入或高温热处理引起的重金属污染。 其特征在于,本方法包括:将氧离子注入晶片11的步骤; 在1300〜1390℃下,在规定的气体气氛下对晶片进行第一次热处理,在1300〜1390℃下对晶片进行第一次热处理,形成掩埋氧化物层12和SOI层13的工序。 注入氧离子之前的晶片的第二热处理步骤的氧浓度为9×10 17至18×10 18原子/ cm 3 (旧ASTM)和掩埋氧化物层在晶片中完全或局部地形成,以在氧离子注入步骤之前或在氧离子注入步骤和第一热处理步骤之间形成在晶片中形成的氧沉淀核14b; 以及第三热处理步骤,其在所述晶片中形成氧沉淀核14b,以形成氧析出物14c。
摘要:
This invention provides a heat treatment jig for semiconductor silicon substrates, which, in respective heat treatment of hydrogen annealing or argon annealing, can handle enlargement of the diameter of wafers to be treated and can also prevent slipping and dislocations that occur as a result of the stress caused by the weight of the wafer itself or the deflection of the heat treatment jig itself.
摘要:
An SOI substrate having a partial SOI structure in which a buried insulating film having a predetermined area is formed via an active layer in a part of a silicon single crystal substrate in plan view by ion-implanting elements to the part of the substrate and then applying thereto a thermal processing, wherein a thickness of a peripheral edge portion of said buried insulating film is getting thinner toward a terminal edge of said buried insulating film.
摘要:
An epitaxial wafer comprises a silicon substrate, a gettering epitaxial film formed thereon and containing silicon and carbon, and a main silicon epitaxial film formed on the gettering epitaxial film, in which the gettering epitaxial film has a given carbon atom concentration and carbon atoms are existent between its silicon lattices.
摘要:
This invention provides a heat treatment jig for semiconductor silicon substrates, which, in respective heat treatment of hydrogen annealing or argon annealing, can handle enlargement of the diameter of wafers to be treated and can also prevent slipping and dislocations that occur as a result of the stress caused by the weight of the wafer itself or the deflection of the heat treatment jig itself.
摘要:
A manufacturing method for a SIMOX substrate for obtaining a SIMOX substrate by subjecting a silicon substrate having oxygen ions implanted thereinto by heat treatment at 1300 to 1350° C. in an atmosphere of a gas mixture of argon and oxygen, the method includes: performing a pre-heat-treatment to the silicon substrate for five minutes to four hours within the temperature range of 1000° C. to 1280° C. in an atmosphere of inert gas, reducing gas, or a gas mixture of inert gas and reducing gas, after the oxygen ions are implanted and before the heat treatment is performed.
摘要:
This invention provides a heat treatment jig for semiconductor silicon substrates, which, in respective heat treatment of hydrogen annealing or argon annealing, can handle enlargement of the diameter of wafers to be treated and can also prevent slipping and dislocations that occur as a result of the stress caused by the weight of the wafer itself or the deflection of the heat treatment jig itself.