摘要:
A heat treatment jig for semiconductor silicon substrates is configured such that a cristobalitized oxide film is formed in a region where the cristobalitized oxide film is in contact with a silicon substrate backside. When said heat treatment jig is used, generation of a slip can be prevented during heat treatment. In the case where the heat treatment jig is used in combination with a shielding plate, particles are further prevented from adhering to the silicon substrate surface to maintain quality characteristics of the semiconductor silicon substrate at a higher level, and device production yield can largely be improved. The heat treatment jig can easily be manufactured by introducing a cristobalitization promoting agent to a surface or in the vicinity of a surface of the heat treatment jig, performing the heat treatment at temperatures in the range of 1000 to 1380° C., and repeating the introduction of the cristobalitization promoting agent and the heat treatment.
摘要:
A heat treatment jig by the invention comprising: the diameter of a disk-type structure being 60% or more of that of loaded semiconductor wafers; the thickness being 1.0 mm or more but 10 mm or less; the surface roughness Ra of 0.1 μm or more but 100 μm or less at a contacting surface with the wafers; and the surface planarity being specifically controlled in the concentric direction as well as in the diametrical direction, otherwise in place of above planarity, comprising a controlled maximum height in such a way that the maximum height is obtained by the flatness measurement at the multiple positions and the difference between said maximum height and the hypothetical-average-height-plane thus set is 50 μm or less, can reduce the slip generation due to the close adhesion of the wafers and the jig. Owing to this, even if the wafers having large tare weight should be heat-treated, the slip generation can be effectively prevented, thus enabling the jig to be widely used as the reliable heat treatment jig for semiconductor substrates.
摘要:
A heat treatment jig by the invention comprising: the diameter of a disk-type structure being 60% or more of that of loaded semiconductor wafers; the thickness being 1.0 mm or more but 10 mm or less; the surface roughness Ra of 0.1 μm or more but 100 μm or less at a contacting surface with the wafers; and the surface planarity being specifically controlled in the concentric direction as well as in the diametrical direction, otherwise in place of above planarity, comprising a controlled maximum height in such a way that the maximum height is obtained by the flatness measurement at the multiple positions and the difference between said maximum height and the hypothetical-average-height-plane thus set is 50 μm or less, can reduce the slip generation due to the close adhesion of the wafers and the jig. Owing to this, even if the wafers having large tare weight should be heat-treated, the slip generation can be effectively prevented, thus enabling the jig to be widely used as the reliable heat treatment jig for semiconductor substrates.
摘要:
A heat treatment jig for supporting silicon semiconductor substrates by contacting, being loaded onto a heat treatment boat in a vertical heat treatment furnace, comprises; the configuration of a ring or a disc structure with the wall thickness between 1.5 and 6.0 mm; the deflection displacement of 100 μm or less at contact region in loaded condition; the outer diameter which is 65% or more of the diameter of said substrate; and the surface roughness (Ra) of between 1.0 and 100 μm at the contact region. The use of said jig enables to effectively retard the slip generation and to avoid the growth hindrance of thermally oxidized film at the back surface of said substrate, diminishing the surface steps causing the defocus in photolithography step in device fabrication process, thereby enabling to maintain high quality of silicon semiconductor substrates and to substantially enhance the device yield.
摘要:
An object of the present invention is to provide a single-crystal silicon wafer where octahedral voids of Grown-in defects, which are the generation source of COP on the surface and COP at several .mu.m depth of the surface layer of the single-crystal silicon wafer grown by the CZ method, are effectively eliminated, and a fabrication method of this wafer, where oxygen near the surface is out-diffused by annealing in a hydrogen and/or inactive gas ambient and oxide film on the inner walls of the octahedral voids near the surface are removed by the created unsaturated oxygen area, then oxidation annealing is performed in an oxygen ambient or mixed gas ambient of oxygen and inactive gas, so that interstitial silicon atoms are forcibly injected to completely eliminate the octahedral voids near the surface, and at the same time an IG layer is created in the bulk of the wafer.
摘要:
This invention anneals a vertical stack of two or more groups of unseparated wafers, with approximately 10 wafers in each group. The invention makes it possible to anneal more wafers in a single annealing operation under a variety of conditions, including: oxygen outer diffusion annealing to form a denuded zone; annealing to control bulk micro defects and provide intrinsic gettering functions; annealing to enhance gate oxide integrity by eliminating crystal-originated particles from the wafer surface and internal grown-in or as-grown defects; and suppression of dislocation and slip in elevated temperature environments.
摘要:
The present invention provides a method of manufacturing a semiconductor wafer whereby (1) deterioration of a micro-roughness in a low temperature range in hydrogen atmospheric treatment and increase of resistivity due to outward diffusion of an electrically active impurity in a high temperature range are prevented; (2) in the heat treatment in a hydrogen gas atmosphere, the concentration of gas molecules in the atmosphere, such as water, oxygen and the like, are brought to 5 ppm or less in water molecule conversion; and a reaction is suppressed in which a substrate surface is oxidized unequally and the micro-roughness deteriorates; and (3) the same kind of impurity as the electrically active impurity contained in a Si substrate is mixed into the atmosphere and the outward diffusion of the impurity in the vicinity of the Si substrate surface is prevented to prevent variation of the resistivity.
摘要:
An epitaxial wafer comprises a silicon substrate, a gettering epitaxial film formed thereon and containing silicon and carbon, and a main silicon epitaxial film formed on the gettering epitaxial film, in which the gettering epitaxial film has a given carbon atom concentration and carbon atoms are existent between its silicon lattices.
摘要:
This invention provides a heat treatment jig for semiconductor silicon substrates, which, in respective heat treatment of hydrogen annealing or argon annealing, can handle enlargement of the diameter of wafers to be treated and can also prevent slipping and dislocations that occur as a result of the stress caused by the weight of the wafer itself or the deflection of the heat treatment jig itself.
摘要:
A manufacturing method for a SIMOX substrate for obtaining a SIMOX substrate by subjecting a silicon substrate having oxygen ions implanted thereinto by heat treatment at 1300 to 1350° C. in an atmosphere of a gas mixture of argon and oxygen, the method includes: performing a pre-heat-treatment to the silicon substrate for five minutes to four hours within the temperature range of 1000° C. to 1280° C. in an atmosphere of inert gas, reducing gas, or a gas mixture of inert gas and reducing gas, after the oxygen ions are implanted and before the heat treatment is performed.