Abstract:
A focal point detection device capable of good focal position detection even when the focus lens is displaced due to impact, and an image capture device. During focal point detection, when focal point detection is impossible, whether AF evaluation values decrease continuously is determined, and whether impact has occurred is detected when decreasing continuously. The focus lens is moved to the initial position when AF evaluation values decrease continuously and impact is detected, as the focus lens is possibly displaced. After the focal point detection is performed again and it is determined whether it is possible to detect the focal point, the focus lens is moved to the focal position when focal point detection is possible, and the focus lens is moved toward the nearside when focal point detection is not possible, on the basis that the photographic subject has been image captured outside of the set image capture range.
Abstract:
On a semiconductor chip in a semiconductor integrated circuit, a plurality of circuit cells each of which has a pad are formed along a first chip side of the semiconductor chip. Among the plurality of circuit cells, one or more circuit cells at least in the vicinity of an end portion on the first chip side are arranged having a steplike shift in a direction apart from the first chip side with decreasing distance from the center portion to the end portion on the first chip side.
Abstract:
A driver circuit is provided for preventing generation of a pass-through current in a CMOS output unit even if a power supply voltage VDD supplied from a low voltage power supply drops below a recommended operating power supply voltage. The driver circuit includes a level shift unit having PMOS transistors and NMOS transistors, and a CMOS output unit having a PMOS transistor and an NMOS transistor. The source, drain and gate of one PMOS transistor are respectively connected to a high voltage power supply, a first contact and a second contact. The source, drain and gate of a second PMOS transistor are respectively connected to a high voltage power supply, the second contact and the first contact. The source of one NMOS transistor is grounded, the drain thereof is connected to the first contact, and the gate thereof receives a low voltage signal. The source of a second NMOS transistor is grounded, the drain thereof is connected to the second contact, and the gate thereof receives a low voltage signal. In this driver circuit, the driving current of the one PMOS transistor is higher than the driving current of the one NMOS transistor.
Abstract:
A drive voltage supply circuit has a first wire line, a second wire line, a first drive circuit, a plurality of second drive circuits, a control circuit for driving the first drive circuit and the plurality of second drive circuits, and an impedance element connected between the first wire line and each of output terminals.
Abstract:
An optical controller has a lens to be driven, a holding section which holds the lens and is movable in a driving direction of the lens, a polymer actuator which drives the holding section in the driving direction by expanding and contracting in response to application and release of a voltage, and a control section which controls a position of the lens by controlling application and release of a voltage with respect to the polymer actuator.
Abstract:
A vibration damper little depending on temperature, capable of damping plural resonance vibrations over a wide frequency region as well as damping a specific frequency vibration is provided. The vibration damper comprises a housing formed of a rigid material, having an internal space and fixed to a vibration transmitting member, an elastic body inserted in the internal space not bonded thereto with a gap in a direction of vibration of the housing, and a weight integrally supported by the elastic body so as not to touch the housing. The elastic body and the weight form a dynamic damper.
Abstract:
The collector, emitter, and base of a bipolar transistor circuit are connected to a high side power supply terminal, the drain of a level shift transistor, and a floating power supply terminal, respectively. When a high side output transistor is on, the floating power supply terminal is at the potential of a high potential power supply terminal. The high side power supply terminal is at a potential higher than the potential of the floating power supply terminal by a constant voltage. Turning the level shift transistor on, its drain potential drops below the potential of the floating power supply terminal; The base current flows through the bipolar transistor circuit and the drain potential of the level shift transistor is clamped near the potential of the floating power supply terminal; The bipolar transistor circuit is turned on and its collector current supplies the drain current of the level shift transistor.
Abstract:
In a semiconductor integrated circuit device of the present invention, temperature increase of a bonding wire can be suppressed even when conductive leads are short-circuited with each other, and reliability of the semiconductor integrated circuit device is improved. The conductive leads of a resin package for supplying a power supply section of a semiconductor integrated circuit chip with power from an external power supply are connected with bonding pads of the semiconductor integrated circuit chip by a plurality of bonding wires. Furthermore, the conductive leads connected to a GND for supplying the power supply section of the semiconductor integrated circuit chip with a grounding potential are connected with the bonding pads of the semiconductor integrated circuit chip by a plurality of bonding wires.
Abstract:
A circuit for generating a ternary signal that receives a binary input-control signal and a binary reset signal and outputs a ternary signal. The circuit includes first to third transistors, each source terminal thereof is respectively connected to the three power supplies, and a sequential circuit that outputs control signals controlling the transistors. The sequential circuit outputs control signals that make the first and the third transistors be switched in a complementary manner in an initial state, and make the second and the third transistors be switched in a state that it is released from the initial state.
Abstract:
The collector, emitter, and base of a bipolar transistor circuit are connected to a high side power supply terminal, the drain of a level shift transistor, and a floating power supply terminal, respectively. When a high side output transistor is on, the floating power supply terminal is at the potential of a high potential power supply terminal. The high side power supply terminal is at a potential higher than the potential of the floating power supply terminal by a constant voltage. Turning the level shift transistor on, its drain potential drops below the potential of the floating power supply terminal; The base current flows through the bipolar transistor circuit and the drain potential of the level shift transistor is clamped near the potential of the floating power supply terminal; The bipolar transistor circuit is turned on and its collector current supplies the drain current of the level shift transistor.