摘要:
A braking/driving force control device includes an operating unit that executes an acceleration operation and a deceleration operation by an integral pedal, a stroke sensor that detects a stroke amount due to an operation of the operating unit, a load sensor that detects a load due to an operation of the operating unit, and a control unit that controls acceleration of a vehicle based on a stroke amount detected by the stroke sensor and further controls deceleration of a vehicle based on a load detected by the load sensor.
摘要:
A braking/driving force control device includes an operating unit that executes an acceleration operation and a deceleration operation by an integral pedal, a stroke sensor that detects a stroke amount due to an operation of the operating unit, a load sensor that detects a load due to an operation of the operating unit, and a control unit that controls acceleration of a vehicle based on a stroke amount detected by the stroke sensor and further controls deceleration of a vehicle based on a load detected by the load sensor.
摘要:
A vehicle control device is a vehicle control device for a vehicle capable of coasting, in which when there is no acceleration or deceleration request to the vehicle while traveling, power transmission between an engine and drive wheels is cut off and the vehicle is allowed to travel by inertia, wherein in a state in which there is no acceleration or deceleration request to the vehicle while traveling and power is transmitted between the engine and the drive wheels, whether or not to implement the coasting is determined by comparing a required deceleration rate Dt which is estimated as a deceleration rate to be later required of the vehicle and a coasting deceleration rate Dn which is estimated as a deceleration rate during the coasting. Where it is determined to implement the coasting, power transmission between the engine and the drive wheels is cut off and the coasting is implemented, and where it is determined not to implement the coasting, power transmission between the engine and the drive wheels is maintained. As a result, the implementation of coasting that can provide a sense of anxiety or discomfort to the driver can be suppressed.
摘要:
A driving force control apparatus includes a driver model which is a functional block adjusting characteristics relevant to human senses and a powertrain manger which is a functional block adjusting vehicle's hardware characteristics. The driver model includes a target base driving force calculation unit (static characteristics) calculating a target driving force from an accelerator pedal position using a base driving force map or the like, and a target transient characteristics addition unit calculating a final target driving force from the target driving force using transient characteristics represented by a transfer function. The powertrain manager includes a target engine torque and AT gear calculation unit and a characteristics compensator compensating for response of the vehicle.
摘要:
A vehicle control device is a vehicle control device for a vehicle capable of coasting, in which when there is no acceleration or deceleration request to the vehicle while traveling, power transmission between an engine and drive wheels is cut off and the vehicle is allowed to travel by inertia, wherein in a state in which there is no acceleration or deceleration request to the vehicle while traveling and power is transmitted between the engine and the drive wheels, whether or not to implement the coasting is determined by comparing a required deceleration rate Dt which is estimated as a deceleration rate to be later required of the vehicle and a coasting deceleration rate Dn which is estimated as a deceleration rate during the coasting. Where it is determined to implement the coasting, power transmission between the engine and the drive wheels is cut off and the coasting is implemented, and where it is determined not to implement the coasting, power transmission between the engine and the drive wheels is maintained. As a result, the implementation of coasting that can provide a sense of anxiety or discomfort to the driver can be suppressed.
摘要:
The present invention provides inspection of a transmission with higher precision and in a shorter period of time. Before a finished A/T is inspected, a V/B ASSY and an ECU are inspected together by a V/B tester in a subsidiary line. A solenoid current command value (a characteristic value inherent in the A/T) for a linear solenoid of the V/B ASSY is corrected and written into the ECU through CAN communication. Spring load of a return spring SP and stroke of the piston of a hydraulic servo for a frictional engagement element are measured. Actually measured values or corrected values of the spring load and the stroke are stored. In the final inspection of the A/T a finished-product tester reads the stored characteristic values and transmits them to the ECU integrated with the A/T through CAN communication. The characteristic values are then written into the ECU. The finished-product tester inspects the finished A/T product, using the characteristic values thus written into the ECU.
摘要:
The load element state detecting portion 72 detects the completion of the filling of the hydraulic oil into the clutch 62 and the working limit of the accumulator 64 on the basis of the displacement of the spool valve element 42. That is, since the completion of the filling of the hydraulic oil into the clutch and the working limit of the accumulator 64 are directly detected, so that the completion of the filling of the hydraulic oil into the clutch 62 and the working limit of the accumulator 64 can be detected with high precision regardless of differences among products and the time-lapse variation. Furthermore, they can be detected without equipping any special device to the hydraulic control circuit, and thus there is an advantage that the device construction is simple.
摘要:
In order to control slip amount of a disengagement side engagement device at the time of a gear shift operation, a target value Nr for rotational speed of an input shaft of an automatic transmission is calculated inside an input shaft speed target value calculating block. Slip control of the disengagement side engagement device is then carried out by controlling engine torque using an engine torque control amount obtained from a engine torque control amount estimation block and the clutch slip amount compensation value calculating section to cause rotation speed Nt of the input shaft to follow the target value Nr. In this way, responsiveness and precision of slip control of the disengagement side engagement device at the time of gear shift operation are improved, and it is possible to improve gear shift shock and to carry out a gear shift operation in a short period of time.
摘要:
When changing gear, engagement side clutch coupling force of an automatic transmission (32) is controlled in response to an engagement side clutch coupling force control amount set in advance in an engagement side clutch coupling force control amount storage section (36). A disengagement side clutch coupling force control amount calculating block (40) has a physical model of the automatic transmission (32) internally. This disengagement side clutch coupling force control amount calculating block (40) then calculates disengagement side clutch coupling force control amount from a transmission input torque estimation value estimated by a transmission input torque estimation block (34), a running resistance estimation value from a running resistance estimation block (38) and engagement side clutch coupling force control amount using the physical model, and controls the automatic transmission (32) using the calculated disengagement side clutch coupling force control amount. Since disengagement side clutch coupling force control amount is calculated using a physical model, it is easy to adjust the disengagement side clutch coupling amount. It is also suitable to control engine torque at the time of gear shift, and this engine torque can also be determined using a physical equation.
摘要:
A deviation between a target value of a quantity of state and an actual value of the quantity of state that is caused to follow the target value or a time-integral of the deviation is filtered. Based on the filtered value, a switching surface &sgr; is calculated. Based on a value of the switching surface &sgr;, a control input value u is outputted. The filter is set through comparison in Bode diagrams between a design model of a control system based on an ordinary sliding mode control method and a characteristic variation model of the control system, and by performing compensation in such a direction as to cancel out the variation. The filtering process makes it possible to properly control the control system having a dead time by the sliding mode control method.