Abstract:
The invention includes an apparatus and a method that provides a memory back-up system. The memory back-up system includes a first memory cell, and a non-volatile memory cell that is interfaced to the first memory cell. Control circuitry allows data to be written to either the first memory cell or the non-volatile memory cell, and provides transfer of the data from either the first memory cell or the non-volatile memory cell, to the other of either the first memory cell or the non-volatile memory cell. The memory back-up system can also include a plurality of first memory cells, and a plurality of non-volatile memory cells that are interfaced to the first memory cells. Control circuitry allows data to be written to either the first memory cells or the non-volatile memory cells, and that provides transfer of the data from either the first memory cells or the non-volatile memory cells, to the other of either the first memory cells or the non-volatile memory cells.
Abstract:
The invention includes an apparatus and a method that provides a memory back-up system. The memory back-up system includes a first memory cell, and a non-volatile memory cell that is interfaced to the first memory cell. Control circuitry allows data to be written to either the first memory cell or the non-volatile memory cell, and provides transfer of the data from either the first memory cell or the non-volatile memory cell, to the other of either the first memory cell or the non-volatile memory cell. The memory back-up system can also include a plurality of first memory cells, and a plurality of non-volatile memory cells that are interfaced to the first memory cells. Control circuitry allows data to be written to either the first memory cells or the non-volatile memory cells, and that provides transfer of the data from either the first memory cells or the non-volatile memory cells, to the other of either the first memory cells or the non-volatile memory cells.
Abstract:
A flexible media magnetic printing system provides for data storage within flexible media imprinted with magnetic ink. In a particular embodiment, the printing system includes at least one reservoir of magnetic ink with magnetic particles capable of supporting high density data, and at least one reservoir of visible ink. The reservoirs are coupled to a print head including one or more ink-ejecting nozzles, which is removably or fixedly coupled to at least one magnetic read/write device. The magnetic read/write device tracks above the magnetic ink applied by the ink-ejecting nozzles to the flexible media. The magnetic read/write device writes to the magnetic ink by providing a magnetic field of sufficient intensity to re-orient the magnetic alignment within the ink to a known direction. The magnetic read/write device also reads data from flexible media, for example, paper or cloth that is imprinted with data-embedded magnetic ink. Visible or substantially invisible magnetic ink may be applied as dots within or strips beneath characters printed in visible ink. An inkjet printer head incorporating the flexible media magnetic printing system is further provided.
Abstract:
A cross point resistive memory array has a first array of cells arranged generally in a plane. Each of the memory cells includes a memory storage element and is coupled to a diode. The diode junction extends transversely to the plane of the array of memory cells.
Abstract:
The invention includes a parallel processor. The parallel processor includes a plurality of non-volatile memory cells. The parallel processor additionally includes a plurality of processor elements. At least one non-volatile memory cell corresponds with each of the processor elements. The processor elements each access data from at least one corresponding non-volatile memory cell. The processor elements perform processing on the data. The non-volatile memory cells can include magnetic memory cells.
Abstract:
The present invention is related to detecting location of a navigation device using sensor data analysis, where the sensor is coupled to the navigation device. A hierarchical algorithm is used for making a series of decisions regarding the location of the navigation device, with each decision corresponding to a class among a plurality of classes related to the possible motion modes and/or precise location of the device, including the location of the device with respect to a person's body. By accurately identifying the device location, the hierarchical algorithm facilitates in providing relevant contextual information, thereby enhancing situational awareness.
Abstract:
A communication system that comprises at least two links to carry signals, a first communication unit and a second communication unit. The first communication unit comprises at least two ports, each port configured to transmit and receive signals; and a logic unit configured to process the signals transmitted and received by each of the at least two ports in the first communication unit. The second communication unit comprises at least two ports, each port configured to transmit and receive signals and coupled to a respective one of the at least two ports in the first communication unit via a respective one of the at least two links; a programmable logic unit configured to process the signals transmitted and received by each of the at least two ports in the second communication unit; and a processor. The processor is configured to detect a crossover connection between one of the at least two ports in the second communication unit and the respective one of the at least two ports in the first communication unit based on an analysis of a pair identifier field in a message received at the second communication unit, wherein the pair identifier field is separate from the address field of the received message.
Abstract:
Fiber-optic communications systems are provided for optical communications networks. Fiber-optic communications links may be provided that use spans of transmission fiber to carry optical data signals on wavelength-division-multiplexing channels at different wavelengths between nodes. An apparatus and method are disclosed to use one optical light source per node to perform OTDR and LCV to satisfy safety concerns and accelerate the verification of the integrity of optical fiber links, before the application of high Raman laser powered light sources to a fiber link. A system using only one receiver per node is also disclosed.
Abstract:
A multicast optical switch includes a free-space optical assembly of discrete splitters, cylindrical optics, and a linear array of reflective switching devices, such as microelectromechanical systems (MEMS) mirrors, to provide low-loss, high-performance multicast switching in a compact configuration. The assembly of optical splitters may include multiple planar lightwave circuit splitters or a multi-reflection beam splitter that includes a linear array of partially reflecting mirrors, each of a different reflectivity.
Abstract:
A communication comprises a plurality of digital subscriber line (DSL) links, a first node having at least one application port configured for an elastic service and a plurality of DSL ports, and a second node having at least one application port configured for an elastic service and a plurality of DSL ports. Each of the first and second nodes is configured to interleave data received over the at least one application port across the plurality of DSL ports, each DSL port allocated a set of DSL timeslots for transport of the data received over the at least one application port. When a failure is detected on one of the DSL links, each of the first and second nodes is configured to interleave the data received over the at least one application port across the remaining DSL ports not connected to the failed DSL link without adjusting the set of DSL timeslots allocated to each of the remaining DSL ports for transport of the data from the at least one application port.