Abstract:
A hydrotreating process comprises contacting a substantially liquid hydrocarbon-containing feed stream, which contains compounds of sulfur and metals (preferably Ni and/or V), in the presence of a fixed catalyst bed comprising at least one layer of substantially spherical alumina-containing particles which have been prepared by heating a specific starting material at about 500.degree.-900.degree. C. for improved crush strength retention. In a preferred embodiment, the fixed catalyst bed further comprises at least one layer (b) of catalyst particles comprising a refractory inorganic carrier and at least one hydrogenation promoter. A fixed catalyst bed comprising layers (a) and (b) is provided.
Abstract:
A fixed catalyst bed comprises:(a) a support layer of substantially spherical alumina-containing particles containing about 0-2 weight-% of a promoter element, said particles having been prepared by heating an alumina-containing starting material at a temperature of about 500.degree.-900.degree. C. for a period of time of at least 10 minutes, and(b) at least one layer of hydrotreating catalyst particles.
Abstract:
The catalytic hydrodenitrogenation of organic compounds containing sulfur and/or nitrogen is carried out in the presence of a catalyst composition comprising zinc titanate and at least one promoter selected from the group consisting of vanadium, chromium, cobalt, nickel, molybdenum, tungsten, rhenium, platinum, palladium, rhodium, ruthenium, and compounds thereof.
Abstract:
The catalytic hydrodesulfurization and/or hydrodenitrogenation of an organic sulfur compound and/or an organic nitrogen compound is carried out in the presence of a catalyst composition comprising catalytic grade alumina, titanium, cobalt, zinc and molybdenum.
Abstract:
The catalytic hydrocracking, hydrodesulfurization, and/or hydrodenitrogenation of organic compounds is carried out in the presence of a catalyst composition comprising zeolite, zinc, titanium, and at least one promoter selected from the group consisting of vanadium, chromium, cobalt, nickel, molybdenum, tungsten, rhenium, platinum, palladium, rhodium, ruthenium and compounds thereof.
Abstract:
A process is provided for oxygenating alkyl-substituted aromatic compounds. In the process alkyl-substituted aromatic compounds are contacted with molecular oxygen in the presence of a suitable monocarboxylic acid, an at least partially soluble Te or Se compound, an inorganic bromine compound, and a compound selected from inorganic nitrates and compounds convertible to inorganic nitrates at conditions of the process. In an embodiment of the invention the process is carried out in two distinct steps with contact of the alkyl-substituted aromatic compounds and oxygen in the presence of the essential components produce an ester comprising both an aromatic alcohol and the carboxylic acid with subsequent hydrolyzing of this ester to produce an aromatic alcohol with regeneration of the carboxylic acid.
Abstract:
A catalyst composition comprises (a) alumina, (b) zinc titanate, (c) at least one compound of molybdenum, (d) at least one compound of at least one of nickel and cobalt, and (e) at least one compound of rhenium. This catalyst composition is used for hydrotreating a liquid hydrocarbon-containing feed stream, which contains organic compounds of sulfur, nitrogen and oxygen under such conditions as to obtain a product having reduced levels of sulfur, nitrogen and oxygen. Preferably the hydrocarbon-containing feed stream contains cycloalkanes, which are at least partially reformed to aromatic compounds.
Abstract:
The catalytic hydrodesulfurization of organic compounds containing sulfur is carried out in the presence of a catalyst composition comprising zinc titanate and at least one promoter selected from the group consisting of vanadium, chromium, cobalt, nickel, molybdenum, tungsten, rhenium, platinum, palladium, rhodium, ruthenium, and compounds thereof.
Abstract:
Hydrogen sulfide is removed from a fluid stream by contacting the fluid stream which contains hydrogen sulfide with an absorbing composition comprising zinc, titanium and at least one promoter selected from the group consisting of vanadium, chromium, manganese, iron, cobalt, nickel, molybdenum, rhenium, and compounds thereof. If organic sulfur compounds are present in the fluid stream, the absorbing composition acts as a hydrodesulfurization catalyst to convert the sulfur in the organic sulfur compounds to hydrogen sulfide which is subsequently removed from the fluid stream by the absorbing composition. If olefin contaminants are present in the fluid stream, the absorbing composition acts as hydrogenation catalyst to hydrogenate the olefin contaminants to paraffins.
Abstract:
An apparatus and method for separating and collecting chromatographic samples in which three separate chromatographic columns are cycled through an elution mode, an elevated temperature back-flush mode, and a cooling back-flush mode in continuous repetition so that at any one time one of the columns is in an elution mode, another of the columns is in elevated temperature back-flush mode, and the remaining column is in cooling back-flush mode.