摘要:
A semiconductor memory device and a method for manufacturing the same are provided. The semiconductor memory device includes an oxide layer for isolating individual devices which define device areas so that a cell area and a peripheral circuit area are separated from each other on a semiconductor substrate, a plurality of MOS transistors, which are comprised of source areas, drain areas, and gates that are formed in the cell area and the peripheral circuit area, a bit line, which is formed on the plurality of MOS transistors and is electrically connected to the MOS transistor, a stack-shaped capacitor, which is comprised of a first electrode, a dielectric layer, and a second electrode between which the MOS transistors and the bit line in the cell area is interposed, a guard-ring pattern, which are interposed between the cell area and the peripheral circuit area, surrounds the cell area and is apart from the peripheral circuit area, and a contact fill for plate electrode, which is formed in the guard-ring pattern and is in contact with the second electrode that is formed on the internal sidewall and the bottom of the guard-ring pattern. The guard-ring pattern is formed in a boundary between the cell area and the peripheral circuit area while surrounding the cell area, and thereby step caused by manufacture of the stack-shaped capacitor are removed during a manufacturing process, and the contact fill for plate electrode is formed in the guard-ring pattern, and thereby the ground resistance of the capacitor is reduced, and the electrical characteristics of the memory device are improved.
摘要:
A semiconductor memory device and a method for manufacturing the same are provided. The semiconductor memory device includes an oxide layer for isolating individual devices which define device areas so that a cell area and a peripheral circuit area are separated from each other on a semiconductor substrate, a plurality of MOS transistors, which are comprised of source areas, drain areas, and gates that are formed in the cell area and the peripheral circuit area, a bit line, which is formed on the plurality of MOS transistors and is electrically connected to the MOS transistor, a stack-shaped capacitor, which is comprised of a first electrode, a dielectric layer, and a second electrode between which the MOS transistors and the bit line in the cell area is interposed, a guard-ring pattern, which are interposed between the cell area and the peripheral circuit area, surrounds the cell area and is apart from the peripheral circuit area, and a contact fill for plate electrode, which is formed in the guard-ring pattern and is in contact with the second electrode that is formed on the internal sidewall and the bottom of the guard-ring pattern. The guard-ring pattern is formed in a boundary between the cell area and the peripheral circuit area while surrounding the cell area, and thereby step caused by manufacture of the stack-shaped capacitor are removed during a manufacturing process, and the contact fill for plate electrode is formed in the guard-ring pattern, and thereby the ground resistance of the capacitor is reduced, and the electrical characteristics of the memory device are improved.
摘要:
The present invention relates to I- and II-type crystals of L-α-glyceryl phosphoryl choline, and to a method for preparing same. More particularly, the present invention relates to noble I- and II-type anhydride crystals of L-α-glyceryl phosphoryl choline, which have a higher purity than conventional liquid L-α-glyceryl phosphoryl choline, and one advantage of which is that formulations and dosages of pharmaceuticals are easily modified, and another advantage of which is that the hygroscopicity of the crystals are much lower than that of conventional polymorphic crystals, providing excellent stability during storage. The present invention also relates to a method for preparing the I- and II-type crystals of L-α-glyceryl phosphoryl choline.
摘要:
A semiconductor device and a method of forming the same are provided. The method includes preparing a semiconductor substrate. Insulating layers may be sequentially formed on the semiconductor substrate. Active elements may be formed between the insulating layers. A common node may be formed in the insulating layers to be electrically connected to the active elements. The common node and the active elements may be 2-dimensionally and repeatedly arranged on the semiconductor substrate.
摘要:
A phase change memory device includes a mold layer disposed on a substrate, a heating electrode, a filling insulation pattern and a phase change material pattern. The heating electrode is disposed in an opening exposing the substrate through the mold layer. The heating electrode is formed in a substantially cylindrical shape, having its sidewalls conformally disposed on the lower inner walls of the opening. The filling insulation pattern fills an empty region surrounded by the sidewalls of the heating electrode. The phase change material pattern is disposed on the mold layer and downwardly extended to fill the empty part of the opening. The phase change material pattern contacts the top surfaces of the sidewalls of the heating electrode.
摘要:
A one transistor DRAM device includes: a substrate with an insulating layer, a first semiconductor layer provided on the insulating layer and including a first source region and a first region which are in contact with the insulating layer and a first floating body between the first source region and the first drain region, a first gate pattern to cover the first floating body, a first interlayer dielectric to cover the first gate pattern, a second semiconductor layer provided on the first interlayer dielectric and including a second source region and a second drain region which are in contact with the first interlayer dielectric and a second floating body between the second source region and the second drain region, and a second gate pattern to cover the second floating body.
摘要:
Disclosed is a method of verifying a programmed condition of a flash memory device, being comprised of: determining a level of an additional verifying voltage in response to the number of programming/erasing cycles of memory cells; conducting a verifying operation to programmed memory cells with an initial verifying voltage lower than the additional verifying voltage; and selectively conducting an additional verifying operation with the additional verifying voltage to the program-verified memory cells in response to the number of programming/erasing cycles.
摘要:
A nonvolatile memory device includes a semiconductor substrate having a first well region of a first conductivity type, and at least one semiconductor layer formed on the semiconductor substrate. A first cell array is formed on the semiconductor substrate, and a second cell array formed on the semiconductor layer. The semiconductor layer includes a second well region of the first conductivity type having a doping concentration greater than a doping concentration of the first well region of the first conductivity type. As the doping concentration of the second well region is increased, a resistance difference may be reduced between the first and second well regions.
摘要:
A semiconductor device and a method of forming the same are provided. The method includes preparing a semiconductor substrate. Insulating layers may be sequentially formed on the semiconductor substrate. Active elements may be formed between the insulating layers. A common node may be formed in the insulating layers to be electrically connected to the active elements. The common node and the active elements may be 2-dimensionally and repeatedly arranged on the semiconductor substrate.
摘要:
Methods for setting a read voltage in a memory system which comprises a flash memory device and a memory controller for controlling the flash memory device, comprise sequentially varying a distribution read voltage to read page data from the flash memory device; constituting a distribution table having a data bit number and a distribution read voltage, the data bit number indicating an erase state among the page data respectively read from the flash memory device and the distribution read voltage corresponding to the read page data; detecting distribution read voltages corresponding to data bit numbers each indicating maximum points of possible cell states of a memory cell, based on the distribution table; and defining new read voltages based on the detected distribution read voltages.