Abstract:
A microcomputer is provided having a memory card interface capable of correctly latching data even when a card such as an MMC card is connected thereto. In the microcomputer having an interface with an external device such as a memory card, the interface unit is provided with an output driver connected to an external terminal for outputting a clock signal to output the clock signal and with an equivalent load circuit capable of imparting, to the clock signal extracted from an arbitrary position in a stage previous to the output driver in a clock signal path, delay equivalent to delay resulting from an external load connected to the external terminal in order to generate a clock signal for latching data inputted from the memory card.
Abstract:
A microcomputer is provided having a memory card interface capable of correctly latching data even when a card such as an MMC card is connected thereto. In the microcomputer having an interface with an external device such as a memory card, the interface unit is provided with an output driver connected to an external terminal for outputting a clock signal to output the clock signal and with an equivalent load circuit capable of imparting, to the clock signal extracted from an arbitrary position in a stage previous to the output driver in a clock signal path, delay equivalent to delay resulting from an external load connected to the external terminal in order to generate a clock signal for latching data inputted from the memory card.
Abstract:
A microcomputer is provided having a memory card interface capable of correctly latching data even when a card such as an MMC card is connected thereto. In the microcomputer having an interface with an external device such as a memory card, the interface unit is provided with an output driver connected to an external terminal for outputting a clock signal to output the clock signal and with an equivalent load circuit capable of imparting, to the clock signal extracted from an arbitrary position in a stage previous to the output driver in a clock signal path, delay equivalent to delay resulting from an external load connected to the external terminal in order to generate a clock signal for latching data inputted from the memory card.
Abstract:
A microcomputer is provided having a memory card interface capable of correctly latching data even when a card such as an MMC card is connected thereto. In the microcomputer having an interface with an external device such as a memory card, the interface unit is provided with an output driver connected to an external terminal for outputting a clock signal to output the clock signal and with an equivalent load circuit capable of imparting, to the clock signal extracted from an arbitrary position in a stage previous to the output driver in a clock signal path, delay equivalent to delay resulting from an external load connected to the external terminal in order to generate a clock signal for latching data inputted from the memory card.
Abstract:
A microcomputer is provided having a memory card interface capable of correctly latching data even when a card such as an MMC card is connected thereto. In the microcomputer having an interface with an external device such as a memory card, the interface unit is provided with an output driver connected to an external terminal for outputting a clock signal to output the clock signal and with an equivalent load circuit capable of imparting, to the clock signal extracted from an arbitrary position in a stage previous to the output driver in a clock signal path, delay equivalent to delay resulting from an external load connected to the external terminal in order to generate a clock signal for latching data inputted from the memory card.
Abstract:
A microcomputer is provided having a memory card interface capable of correctly latching data even when a card such as an MMC card is connected thereto. In the microcomputer having an interface with an external device such as a memory card, the interface unit is provided with an output driver connected to an external terminal for outputting a clock signal to output the clock signal and with an equivalent load circuit capable of imparting, to the clock signal extracted from an arbitrary position in a stage previous to the output driver in a clock signal path, delay equivalent to delay resulting from an external load connected to the external terminal in order to generate a clock signal for latching data inputted from the memory card.
Abstract:
The present invention provides a semiconductor device having a stacked structure which realizes the miniaturization of a contour size and the reduction of thickness. The present invention also provides a semiconductor device which realizes high performance and high reliability in addition to the miniaturization of the contour size. The semiconductor device uses a package substrate on which bonding leads which are formed respectively corresponding to bonding pads for address and data which are distributed to opposing first and second sides of a memory chip and address terminals and data terminals which are connected to the bonding leads are formed. The semiconductor device further includes an address output circuit and a data input/output circuit which are also served for memory access and a signal processing circuit having a data processing function. A semiconductor chip in which bonding pads which are connected to the bonding leads corresponding to the address terminals of the package substrate and bonding pads which are connected to the bonding leads corresponding to the data terminals of the package substrate are distributed to two sides out of four sides and the above-mentioned memory chip are mounted on the package substrate in a stacked structure.
Abstract:
A semiconductor device uses a package substrate on which bonding leads are formed respectively corresponding to bonding pads for address and data which are distributed to opposing first and second sides of a memory chip and address terminals and data terminals which are connected to the bonding leads. The semiconductor device further includes an address output circuit and a data input/output circuit which also serves for memory access and a signal processing circuit having a data processing function. A semiconductor chip having bonding pads connected to the bonding leads corresponding to the address terminals of the package substrate and bonding pads connected to the bonding leads corresponding to the data terminals of the package substrate and distributed to two sides out of four sides and the above-mentioned memory chip are mounted on the package substrate in a stacked structure.
Abstract:
A semiconductor device uses a package substrate on which bonding leads are formed respectively corresponding to bonding pads for address and data which are distributed to opposing first and second sides of a memory chip and address terminals and data terminals which are connected to the bonding leads. The semiconductor device further includes an address output circuit and a data input/output circuit which also serves for memory access and a signal processing circuit having a data processing function. A semiconductor chip having bonding pads connected to the bonding leads corresponding to the address terminals of the package substrate and bonding pads connected to the bonding leads corresponding to the data terminals of the package substrate and distributed to two sides out of four sides and the above-mentioned memory chip are mounted on the package substrate in a stacked structure. Bonding leads arranged along at least one side of the substrate may include bonding leads of rectangular configuration having longer sides disposed at acute angles with respect to the side of the substrate.
Abstract:
The present invention has for its purpose to provide a technique capable of reducing planar dimension of the semiconductor device. An input/output circuit is formed over the semiconductor substrate, a grounding wiring and a power supply wiring pass over the input/output circuit, and a conductive layer for a bonding pad is formed thereover. The input/output circuit is formed of MISFET elements in the nMISFET forming region and the pMISFET forming region, resistance elements in the resistance element forming regions and diode elements in the diode element forming regions functioning as protective elements. A wiring connected to the protective elements and positioned under the grounding wiring and the power supply wiring is pulled out in a pulling-out region between the nMISFET forming region and the pMISFET forming region and between the grounding wiring and the power supply wiring to be connected to the conductive layer.