Abstract:
A magnetoresistive effect element includes a recording layer having magnetic anisotropy and a variable magnetization direction, a reference layer having magnetic anisotropy and an invariable magnetization direction, an intermediate layer between the recording layer and the reference layer, an underlayer containing scandium (Sc) and disposed on a surface side of the recording layer opposite to a surface side on which the recording layer is disposed, and a side wall layer containing an oxide of Sc and disposed on side surfaces of the recording layer and the intermediate layer.
Abstract:
A magnetoresistive element according to an embodiment includes: a multilayer structure including a first magnetic layer, a second magnetic layer disposed above the first magnetic layer, and a nonmagnetic layer disposed between the first magnetic layer and the second magnetic layer; a conductor disposed above the second magnetic layer, and including a lower face, an upper face opposing to the lower face, and a side face that is different from the lower face and the upper face, an area of the lower face of the conductor being smaller than an area of the upper face of the conductor, and smaller than an area of an upper face of the second magnetic layer; and a carbon-containing layer disposed on the side face of the conductor.
Abstract:
A magnetoresistive element according to an embodiment includes: a multilayer structure including a first magnetic layer, a second magnetic layer disposed above the first magnetic layer, and a nonmagnetic layer disposed between the first magnetic layer and the second magnetic layer; a conductor disposed above the second magnetic layer, and including a lower face, an upper face opposing to the lower face, and a side face that is different from the lower face and the upper face, an area of the lower face of the conductor being smaller than an area of the upper face of the conductor, and smaller than an area of an upper face of the second magnetic layer; and a carbon-containing layer disposed on the side face of the conductor.
Abstract:
A magnetoresistance element includes a first magnetic layer having first and second surfaces, a second magnetic layer, an intermediate layer provided between the first surface and the second magnetic layer, a first layer provided on the second surface, containing B and at least one element selected from Hf, Al, Mg, and Ti and having third and fourth surfaces, a second layer provided on the fourth surface and containing B and at least one element selected from Hf, Al, and Mg, and an insulating layer provided on a sidewall of the intermediate layer and containing at least one element selected from the Hf, Al, and Mg contained in the second layer.
Abstract:
According to one embodiment, a magnetic memory includes a first magnetoresistive element includes a storage layer with a perpendicular and variable magnetization, a tunnel barrier layer, and a reference layer with a perpendicular and invariable magnetization, and stacked in order thereof in a first direction, and a first shift corrective layer with a perpendicular and invariable magnetization, the first shift corrective layer and the storage layer arranged in a direction intersecting with the first direction. Magnetization directions of the reference layer and the first shift corrective layer are the same.
Abstract:
According to one embodiment, a magnetic memory includes a first magnetoresistive element includes a storage layer with a perpendicular and variable magnetization, a tunnel barrier layer, and a reference layer with a perpendicular and invariable magnetization, and stacked in order thereof in a first direction, and a first shift corrective layer with a perpendicular and invariable magnetization, the first shift corrective layer and the storage layer arranged in a direction intersecting with the first direction. Magnetization directions of the reference layer and the first shift corrective layer are the same.