Abstract:
The invention refers to a device (100) for detecting a working status of a medical implant (130), like a stent or bone implant, wherein a micro device (131) is integrated in and/or attached to the implant and comprises a magneto-mechanical oscillator configured to transduce a magnetic excitation field into a magnetic response field, wherein the response field is indicative of a temperature change of the micro device. The device comprises a transmit/receive unit (110) adapted to generate the excitation field, detect the response field, and transduce the detected response field into an electric response signal, and a controller (120) adapted to control the transmit/receive unit and further adapted to determine a change in a temperature of the micro device based on the electric response signal, and to determine the working status of the medical implant based on the determined change in the temperature of the micro device.
Abstract:
The invention relates to a passive medical identification device 1 to be used for identifying a medical tool such as, for example, a surgical instrument, if the medical tool is equipped with the identification device. The identification device comprises a casing 2, a magnetic object 3 arranged within the casing such that it is rotatable out of an equilibrium orientation by an external magnetic torque, and a restoring torque provider 4 such as, for example, a further magnetic object providing a restoring torque forcing the magnetic object back into the equilibrium orientation. The magnetic object 3 rotationally oscillates upon excitation by an external magnetic torque, thereby generating a response magnetic signal which is transduced into an induction signal that can provide a fingerprint specific for the respective identification device. Accordingly, the identity of the identification device and hence of the medical tool equipped with the identification device can be determined based on the induction signal.
Abstract:
The invention relates to an examination apparatus (100), a method and a computer program for tracking permanently magnetic beads (107) that are transported by a fluid flowing through a channel (106) of an object (105). The examination apparatus (100) comprises at least three magnetic field sensors (101, 102, 103) and an evaluation unit (104). With the magnetic field sensors, the magnetic field caused by the permanently magnetic beads (107) is detected. Due to shear forces acting in the fluid, the permanently magnetic beads (107) are rotating and the magnetic field caused by the beads (107) is temporally varying. This temporal variation of the magnetic field is used by the evaluation unit (104) for discriminating sub-signals related to single beads (107) from the overall signal generated by the magnetic field sensors. Furthermore, the evaluation unit determines positioning information of individual beads on the basis of the discriminated sub-signals.
Abstract:
The application describes devices, systems and methods related to an implantable device that is a stent or a heart valve. The implantable device includes a pressure sensor. The implantable device is for being introduced into a subject and for being wirelessly read out by an outside reading system. The pressure sensor comprises a casing with a diffusion blocking layer for maintaining a predetermined pressure within the casing and a magneto-mechanical oscillator with a magnetic object providing a permanent magnetic moment. The magneto-mechanical oscillator transduces an external magnetic or electromagnetic excitation field into a mechanical oscillation of the magnetic object, wherein at least a part of the casing is flexible for allowing to transduce external pressure changes into changes of the mechanical oscillation of the magnetic object.
Abstract:
A mechanism for controlling an electron beam generator of an X-ray tube that switches between a low voltage mode and a high voltage mode. The proposed mechanism, during a transition between the low and high voltage modes, controls a power drawn by the electron beam generator. In particular, during a transition from a low voltage mode to a high voltage mode, the drawn power is reduced and, during a transition from a high voltage mode to a low voltage mode, the drawn power is increased.
Abstract:
The present invention relates to an apparatus and a method for targeted drug delivery by use of a drug substance comprising a drug and magnetic particles. The apparatus comprises selection means for generating a magnetic selection field (50) having a pattern in space of its magnetic field strength such that a first sub-zone (52) having a low magnetic field strength where the magnetization of the magnetic particles is not saturated and a second sub-zone having a higher magnetic field strength where the magnetization of the magnetic particles is saturated are formed in a field of view (28), drive means for changing the position in space of the two sub-zones (52, 54) in the field of view (28) by means of a magnetic drive field so that the magnetization of the magnetic particles changes locally, and a control unit (150) for controlling said drive means to change the position in space of the two sub-zones (52, 54) such that after administration of the drug substance the first sub-zone (52) is moved through a surrounding area (320) arranged around a target area (310) except through the target area (310) itself, said surrounding area (320) representing a potentially affected volume and/or having a predetermined maximal distance from said target area (310).
Abstract:
Disclosed in some embodiments are microdevices, medical devices and a registration apparatuses that allow for tracking of medical device(s) in an ultrasound image while maintaining the quality of the ultrasound image. The microdevice comprises a casing and a magneto mechanical resonator. The magneto mechanical resonator comprises at least two magnetic objects providing a permanent magnetic moment. The magneto mechanical resonator is adapted to transduce an external excitation field into a mechanical movement of the at least two magnetic objects relative to each other such that a changing magnetic response field is generated. A pressure sensor is arranged such that an external ultrasound signal induces an additional movement of the magnetic objects such that the changing magnetic response field is changed in dependency of the external ultrasound signal.
Abstract:
A system for receiving signals from a magneto-mechanical oscillator includes a main coil array adapted to receive a response signal of the magneto-mechanical oscillator and to transmit an excitation signal to the magneto-mechanical oscillator, and an additional coil for receiving a signal of the magneto-mechanical oscillator. A localizer is adapted to localize the additional coil and comprises a controller for controlling the main coil array and the additional coil such that a received localization signal is generated, a sensitivity provider for providing sensitivity information, and a processor for determining a position and/or orientation of the additional coil based on the provided sensitivity information and based on the received localization signal. A kit is provided for upgrading a system with a main coil array, by adding one or more additional coils and providing software for locating the one or more additional coils with the use of a pilot tone transmission.
Abstract:
The invention provides for a medical instrument (100, 300, 400) comprising: a memory (110) for storing machine executable instructions (112) and a processor (106) for controlling the medical instrument. Execution of the machine executable instructions cause the processor to: receive (200) three dimensional medical image data (114) descriptive of a subject (318), wherein the three dimensional medical image data comprises voxels; receive (202) a segmentation of the three dimensional medical image data, wherein the segmentation divides the three dimensional image data into non-tumor voxels (700) and tumor voxels (500); choose (204) a center point (118) of the tumor voxels; divide (206) the tumor voxels into multiple groups (120) using a set of orthogonal planes (502, 504, 600), wherein the center point is within each of the orthogonal planes; calculate (208) at least one group radiomic feature (122) selected from a set of radiomic features for each of the multiple voxel groups; compute (210) a statistical measure (124) for each of the at least one group radiomic feature; calculate (212) a scalar value (128) by calculating the sum of each statistical measure multiplied by a predetermined group weighting value (126), wherein the predetermined group weighting value is unique for each statistical measure; and provide (214) a signal using a signaling interface device (108, 402) if the scalar value is above a predetermined threshold (130).
Abstract:
Aspects of the present invention relate to a device and method for examining and using an electrical field in a magnetic gradient field, containing magnetic particles in an examination area of an object under examination, including introducing magnetic particles into at least part of the examination area of the object under examination; generating an electrical field at least in part of the examination area; generating a magnetic field having a spatial magnetic field strength profile with a first sub-zone with a low magnetic field strength and a second sub-zone with a higher magnetic field strength in the examination area; varying a spatial position of the two sub-zones in the examination area such that a magnetization of the particles changes locally; detecting signals which depend on the magnetization in the examination area influenced by this variation; evaluating the signals to obtain information about the spatial distribution of the magnetic particles in the examination area; and determining a conductivity in the examination area as a function of a magnetization status of the magnetic particles.