Abstract:
Light-emitting devices, such as LEDs, are tested using a photometric unit. The photometric unit, which may be an integrating sphere, can measure flux, color, or other properties of the devices. The photometric unit may have a single port or both an inlet and outlet. Light loss through the port, inlet, or outlet can be reduced or calibrated for. These testing systems can provide increased reliability, improved throughput, and/or improved measurement accuracy.
Abstract:
A method and apparatus for inspection and review of defects is disclosed wherein data gathering is improved. In one embodiment, multiple or segmented detectors are used in a particle beam system.
Abstract:
The present disclosure provides methods and apparatus for testing light-emitting diodes (LEDs), for example, measuring the optical radiation of an LED. In a method, a pulse-width modulated signal is provided to the LED. One or more characteristics of the PWM signal are varied so as to provide a forward voltage, Vf, corresponding to a target junction temperature, Tj, of the LED. The optical radiation of the LED is measured when the LED obtains the target junction temperature.
Abstract:
Embodiments of the present disclosure are directed to an electron beam imaging/inspection apparatus having an electron source device to direct flood electrons on a sample immediately before image acquisition or inspection. The apparatus comprises a first device configured to charge a sample in a first mode, wherein the first device includes an electron source configured to provide a flood beam of charged particles to a first area of the sample. The apparatus also comprises a second device configured to generate a primary beam of electrons and characterize an interaction between the primary beam and a second area of the sample within the first area in a second mode. The apparatus is configured to switch from the first mode to the second mode less than 1 second.