Abstract:
Techniques are disclosed for maintaining consistent lumen output of a lighting assembly over time. By maintaining a consistent lumen output, it is possible to maintain acceptable color stability where color mixing of multiple outputs is used. The lighting assembly may be any lighting configuration that might suffer from lumen depreciation and/or color drift over time, and may include any type(s) of light source(s) that may be monitored and driven accordingly. The lighting assembly, in addition to light source(s), includes a photo detector and a directed light source, such as a laser. The directed light source provides a golden sample for use in calibrating the photo detector, which in turn monitors lumen output of the light source(s). Drive signals are adjusted to account for lumen depreciation of the monitored light source(s).
Abstract:
Techniques are disclosed for maintaining consistent lumen output of a lighting assembly over time. By maintaining a consistent lumen output, it is possible to maintain acceptable color stability where color mixing of multiple outputs is used. The lighting assembly may be any lighting configuration that might suffer from lumen depreciation and/or color drift over time, and may include any type(s) of light source(s) that may be monitored and driven accordingly. The lighting assembly, in addition to light source(s), includes a photo detector and a directed light source, such as a laser. The directed light source provides a golden sample for use in calibrating the photo detector, which in turn monitors lumen output of the light source(s). Drive signals are adjusted to account for lumen depreciation of the monitored light source(s).
Abstract:
The present disclosure provides methods and apparatus for testing light-emitting diodes (LEDs), for example, measuring the optical radiation of an LED. In a method, a pulse-width modulated signal is provided to the LED. One or more characteristics of the PWM signal are varied so as to provide a forward voltage, Vf, corresponding to a target junction temperature, Tj, of the LED. The optical radiation of the LED is measured when the LED obtains the target junction temperature.
Abstract:
A system, apparatus and method of improved measurement of the SPF factor of sunscreen compositions. In one embodiment, a method of measuring the protection of a sunscreen composition includes exposing skin to a known intensity of light, measuring the amount of remitted light from the skin, applying sunscreen to the skin, exposing the skin to which the sunscreen has been applied the known intensity of emitted light of the spectrum of light from which the sunscreen is intended to protect the skin, measuring the amount of light remitted from the skin, and calculating a UltraViolet-A Protection Factor (UVA-PF) of the sunscreen by comparing the amount of light remitted from the skin with the sunscreen to the amount of light remitted from the skin without the sunscreen.
Abstract:
Techniques are disclosed for maintaining consistent lumen output of a lighting assembly over time. By maintaining a consistent lumen output, it is possible to maintain acceptable color stability where color mixing of multiple outputs is used. The lighting assembly may be any lighting configuration that might suffer from lumen depreciation and/or color drift over time, and may include any type(s) of light source(s) that may be monitored and driven accordingly. The lighting assembly, in addition to light source(s), includes a photo detector and a directed light source, such as a laser. The directed light source provides a golden sample for use in calibrating the photo detector, which in turn monitors lumen output of the light source(s). Drive signals are adjusted to account for lumen depreciation of the monitored light source(s).
Abstract:
The present invention relates to an improved dual beam multichannel spectrophotomer employing a simple and novel optical system in combination with photodiode arrays and a unique logrithmic data converter to convert light signals to absorbance. In particular, the optical system utilizes optical elements in a novel arrangement to direct a pair of equivalent sample and reference beams in an essentially parallel formation respectively through a sample and reference cell and to focus and direct the emergent sample and reference beams to a single flat horizontally ruled grating which disperses each of the sample and reference beams respectively onto a pair of vertically disposed photodiode arrays whereby the light signals are converted into absorbance units (AU) by an unique logarithmic data converter. The spectrophotometer is highly accurate, has very low drift, less than 2.times.10.sup.-4 AU/.degree.C., and very low noise, less than .+-.2.times.10.sup.-5 AU. The dual beam multichannel spectrophotomer is particularly suitable for use in high pressure liquid chromatography to record the absorbance spectrum of the samples as they are being eluted from the chromatographic column.
Abstract:
Techniques are disclosed for maintaining consistent lumen output of a lighting assembly over time. By maintaining a consistent lumen output, it is possible to maintain acceptable color stability where color mixing of multiple outputs is used. The lighting assembly may be any lighting configuration that might suffer from lumen depreciation and/or color drift over time, and may include any type(s) of light source(s) that may be monitored and driven accordingly. The lighting assembly, in addition to light source(s), includes a photo detector and a directed light source, such as a laser. The directed light source provides a golden sample for use in calibrating the photo detector, which in turn monitors lumen output of the light source(s). Drive signals are adjusted to account for lumen depreciation of the monitored light source(s).
Abstract:
A test system and method are provided for testing in parallel radiant output of multiple light emitting devices. Generally, the method involves: (i) providing a system having a master, calibrated power meter (CPM), a source transfer standard (STS), and multiple secondary, test site power meters (TSPMs); (ii) determining a relationship between electrical power supplied to the STS and a radiant output therefrom as measured by the CPM; (iii) calibrating the TSPMs using the STS and the relationship between the power supplied to the STS and the radiant output therefrom as determined by the CPM; and (iv) positioning the devices undergoing test on a fixture of the test system and positioning the fixture relative to the TSPMs to test radiant outputs of the devices. Preferably, the TSPMs are calibrated by exposing each to the STS at a known power, determining a difference between the radiant output measured by the CPM and TSPM, using this difference as an offset that is added to the a signal from the TSPM to provide a corrected radiant output for the device under test. Other embodiments are also disclosed.
Abstract:
In order to eliminate equipment-generated fluctuations during the periodic determination of a quantity to be measured which is effected by forming the difference between a measuring signal which has been altered relative to a source signal by the measurement variable and a reference signal which has remained unaffected relative to the source signal by the measurement variable, a base signal level is determined for each measuring cycle as the difference between the reference level and a zero level in the absence of a source signal, subsequent to which each actual reference signal level and each measuring signal level is compensated with the previously determined reference signal level. By amplifying the compensated reference signals prior to difference formation and standardizing the signal difference to the base signal level, a high degree of accuracy may be achieved even if the attenuations of the measuring signal caused by the quantity to be measured are very small.