摘要:
A method of exchanging or transforming end groups in and/or improving the ferroelectric properties of a PVDF-TrFE co-polymer is disclosed. A bulky or chemically dissimilar end group, such as an iodine, sulfate, aldehyde or carboxylic acid end group, may be transformed to a hydrogen, fluorine or chlorine atom. A method of making a PVDF-TrFE co-polymer is disclosed, including polymerizing a mixture of VDF and TrFE using an initiator, and transforming a bulky or chemically dissimilar end group to a hydrogen, fluorine or chlorine atom. A PVDF-TrFE co-polymer or other fluorinated alkene polymer is also disclosed. The co-polymer may be used as a ferroelectric, electromechanical, piezoelectric or dielectric material in an electronic device.
摘要:
A method of exchanging or transforming end groups in and/or improving the ferroelectric properties of a PVDF-TrFE co-polymer is disclosed. A bulky or chemically dissimilar end group, such as an iodine, sulfate, aldehyde or carboxylic acid end group, may be transformed to a hydrogen, fluorine or chlorine atom. A method of making a PVDF-TrFE co-polymer is disclosed, including polymerizing a mixture of VDF and TrFE using an initiator, and transforming a bulky or chemically dissimilar end group to a hydrogen, fluorine or chlorine atom. A PVDF-TrFE co-polymer or other fluorinated alkene polymer is also disclosed. The co-polymer may be used as a ferroelectric, electromechanical, piezoelectric or dielectric material in an electronic device.
摘要:
A method of exchanging or transforming end groups in and/or improving the ferroelectric properties of a PVDF-TrFE co-polymer is disclosed. A bulky or chemically dissimilar end group, such as an iodine, sulfate, aldehyde or carboxylic acid end group, may be transformed to a hydrogen, fluorine or chlorine atom. A method of making a PVDF-TrFE co-polymer is disclosed, including polymerizing a mixture of VDF and TrFE using an initiator, and transforming a bulky or chemically dissimilar end group to a hydrogen, fluorine or chlorine atom. A PVDF-TrFE co-polymer or other fluorinated alkene polymer is also disclosed. The co-polymer may be used as a ferroelectric, electromechanical, piezoelectric or dielectric material in an electronic device.
摘要:
The invention provides a modification of a polymer film surface interaction properties. In this process a polymer carrier object is covered by a chemical composition, comprising photo-polymerizable compounds, photo-initiators or catalysts with the ability to initiate polymerization and semi-fluorinated molecules. The so-produced polymer mold contains semi-fluorinated moieties, which are predominantly located on the surface and on the surface near region of the patterned surface. The polymer mold is suitable as a template with modified properties in a nano-imprint lithography process.
摘要:
The present invention relates to novel GABAA/BzR ligands of the general formulas (I), (II) and (III) wherein R1 is selected from the group consisting of hydrogen, halogen, haloalkyl having 1-2 carbon atoms, alkoxy having 1 to 3 carbon atoms in the alkyl chain, alkyl having 1 to 3 carbon atoms, and nitro, and R2 is selected from the group consisting of hydrogen, halogen and alkyl having 1 to 2 carbon atoms, as well as the use of these compounds for treating anxiolytic, anticonvulsant, sedative-hypnotic and myorelaxant conditions as well as anxiogenic, somnolytic and convulsant conditions in mammals including pharmaceutical compositions comprising the same
摘要:
An electronic component (1) and an electronic device (100) comprising one or more such components (1). The electronic component (1) comprises a stack (4) of layers arranged on a flexible substrate (3). Said stack comprises an electrically active part (4a) and a protective layer (11) for protecting the electrically active part against scratches and abrasion. Said electrically active part comprises a bottom electrode layer (5) and a top electrode layer (9) and at least one insulating or semi-insulating layer (7) between said electrodes. The stack further comprises a buffer layer (13), arranged between the top electrode layer (9) and the protective layer (11). The buffer layer (13) is adapted for at least partially absorbing a lateral dimensional change (ΔL) occurring in the protective layer (11) and thus preventing said dimensional change (ΔL) from being transferred to the electrically active part (4a), thereby reducing the risk of short circuit to occur between the electrodes.
摘要:
A ferroelectric memory cell (1) and a memory device (100) comprising one or more such cells (1). The ferroelectric memory cell comprises a stack (4) of layers arranged on a flexible substrate (3). Said stack comprises an electrically active part (4a) and a protective layer (11) for protecting the electrically active part against scratches and abrasion. Said electrically active part comprises a bottom electrode layer (5) and a top electrode layer (9) and at least one ferroelectric memory material layer (7) between said electrodes. The stack further comprises a buffer layer (13) arranged between the top electrode layer (9) and the protective layer (11). The buffer layer (13) is adapted for at least partially absorbing a lateral dimensional change (ΔL) occurring in the protective layer (11) and thus preventing said dimensional change (ΔL) from being transferred to the electrically active part (4a), thereby reducing the risk of short circuit to occur between the electrodes.
摘要:
A ferroelectric memory cell (1) and a memory device (100) comprising one or more such cells (1). The ferroelectric memory cell comprises a stack (4) of layers arranged on a flexible substrate (3). Said stack comprises an electrically active part (4a) and a protective layer (11) for protecting the electrically active part against scratches and abrasion. Said electrically active part comprises a bottom electrode layer (5) and a top electrode layer (9) and at least one ferroelectric memory material layer (7) between said electrodes. The stack further comprises a buffer layer (13) arranged between the top electrode layer (9) and the protective layer (11). The buffer layer (13) is adapted for at least partially absorbing a lateral dimensional change (ΔL) occurring in the protective layer (11) and thus preventing said dimensional change (ΔL) from being transferred to the electrically active part (4a), thereby reducing the risk of short circuit to occur between the electrodes.
摘要:
The invention to provide curable materials, comprising photo-reactive compounds, in particular, photoinitiators and polymerizable mono- or multifunctional monomers such as acrylates or epoxides. The material may also contain fluoro-surfactants completely or partly terminated by functional groups with the ability to bind covalently to said chemical composition under curing. The curable compositions are either purely acrylate based or a hybrid of different types of monomers such as acrylates, epoxides or vinyl ethers. The polymerizable monomers may cure with the use of different types of photoinitiator, such as free radical photoinitiators or cationic photoinitiators, ultimately forming a hybrid resist comprising interpenetrating networks of different types of monomers e.g. acrylates and epoxides. The acrylate/epoxide hybrid system has showed improved replication properties in terms of high nano-imprint lithography process fidelity, due to increased conversion of acrylates and low shrinkage.
摘要:
An electronic component (1) and an electronic device (100) comprising one or more such components (1). The electronic component (1) comprises a stack (4) of layers arranged on a flexible substrate (3). Said stack comprises an electrically active part (4a) and a protective layer (11) for protecting the electrically active part against scratches and abrasion. Said electrically active part comprises a bottom electrode layer (5) and a top electrode layer (9) and at least one insulating or semi-insulating layer (7) between said electrodes. The stack further comprises a buffer layer (13), arranged between the top electrode layer (9) and the protective layer (11). The buffer layer (13) is adapted for at least partially absorbing a lateral dimensional change (ΔL) occurring in the protective layer (11) and thus preventing said dimensional change (ΔL) from being transferred to the electrically active part (4a), thereby reducing the risk of short circuit to occur between the electrodes.