Abstract:
A method for manufacturing a semiconductor substrate includes forming a resist underlayer film directly or indirectly on a substrate by applying a composition. The composition includes a compound and a solvent. The compound includes: at least one nitrogen-containing ring structure selected from the group consisting of a pyridine ring structure and a pyrimidine ring structure; and a partial structure represented by formula (1-1) or (1-2). X1 and X2 are each independently a group represented by formula (i), (ii), (iii), or (iv); * is a bond with a moiety of the compound other than the partial structure represented by formula (1-1) or (1-2); and Ar11 and Ar12 are each independently a substituted or unsubstituted aromatic ring having 5 to 20 ring members that forms a fused ring structure together with the two adjacent carbon atoms in the formulas (1-1) and (1-2).
Abstract:
The composition for film formation includes a compound including a group of the formula (1) and a solvent. In the formula (1), R1 to R4 each independently represent a hydrogen atom, a monovalent organic group having 1 to 20 carbon atoms, or R1 to R4 taken together represent a cyclic structure having 3 to 20 ring atoms together with the carbon atom or a carbon chain to which R1 to R4 bond. Ar1 represents a group obtained by removing (n+3) hydrogen atoms from an aromatic ring of an arene having 6 to 20 carbon atoms. n is an integer of 0 to 9. R5 represents a hydroxy group, a halogen atom, a nitro group, or a monovalent organic group having 1 to 20 carbon atoms.
Abstract:
[Problem]To provide a method for producing a hydrogenated conjugated diene polymer that is excellent in the improvement in dispersibility at the time of compounding with a filler, is excellent in the reduction in hysteresis loss after compounding, and enables the formation of a polymer alloy which has excellent processability at the time of compounding with a thermoplastic resin or the like and has excellent physical properties after compounding.[Means for solution]A method for producing a hydrogenated conjugated diene polymer, the method comprising a step of polymerizing at least a conjugated diene compound in the presence of a polymerization initiator composed of an amine compound having at least one structure of the formulae (x) and (y) and at least one metal compound selected from alkali metal compounds and alkaline earth metal compounds to obtain a conjugated diene polymer and a step of hydrogenating the conjugated diene polymer. wherein, in the formula (x), R1 is a hydrocarbylene group, the hydrocarbylene group in R1 may contain a heteroatom as long as the hydrocarbylene group does not have an active hydrogen atom, and A1 is a trihydrocarbylsilyl group; in the formula (y), R2 and R3 are each independently a hydrocarbylene group, the hydrocarbylene group in each of R2 and R3 may contain a heteroatom as long as the hydrocarbylene group does not have an active hydrogen atom, and A2 is a functional group which has at least one atom selected from a nitrogen atom N, a phosphorus atom P, and a sulfur atom S, has a trihydrocarbylsilyl group, and does not have an active hydrogen atom and in which the atom that is bonded to R3 is N, P or S; and the above R1 and A1 may be bonded to each other to form a cyclic structure and a part of the above R2, R3, and A2 may be bonded to each other to form a cyclic structure.
Abstract:
Provided is a rubber material that is well-balanced in terms of tensile strength, low hysteresis loss property, wet grip property, and abrasion resistance. A hydrogenated conjugated diene-based polymer which is a hydrogenation product of a conjugated diene-based polymer including butadiene-derived structural units is produced by a method comprising a step of preparing a conjugated diene-based polymer having, at a side chain moiety thereof, a functional group capable of interacting with silica; and a step of hydrogenating the conjugated diene-based polymer so as to achieve a hydrogenation rate of 80 to 99% of butadiene-derived structural units included in the conjugated diene-based polymer.
Abstract:
Provided is a hydrogenated conjugated diene polymer which is a hydrogenated product of a conjugated diene polymer comprising a structural unit derived from a conjugated diene compound and a structural unit derived from an aromatic vinyl compound, wherein the conjugated diene compound includes butadiene, the hydrogenated conjugated diene polymer is obtained by hydrogenating a polymer in which a vinyl bond content in structural unit derived from butadiene is 55 mol % or more, and a hydrogenation rate of the structural unit derived from butadiene is 91% to 99%.
Abstract:
Provided is a polymer composition for use in the production of a crosslinked polymer having excellent tensile strength and abrasion resistance. A polymer composition comprising a polymer having multiple anionic functional groups and a polymer having multiple nitrogenated functional groups each represented by formula (1). The anionic functional groups are at least one group selected from a carboxy group, a sulfo group and a phosphate group. In one embodiment, each of the nitrogenated functional groups represented by formula (1) is bound to a structure derived from a conjugated diene compound or a structure derived from an aromatic vinyl compound.
Abstract:
Provided is a hydrogenated conjugated diene polymer which is a hydrogenated product of a conjugated diene polymer having a structural unit derived from a conjugated diene compound and a structural unit derived from an aromatic vinyl compound, wherein the conjugated diene compound includes butadiene, an amount of the structural unit derived from the aromatic vinyl compound is 30 mass % or more with respect to entire structural units derived from monomers of the polymer, and a hydrogenation rate of the structural unit derived from butadiene is 80% to 99%.
Abstract:
A composition comprises a compound and a solvent. The compound comprises a carbon-carbon triple bond-containing group, and at least one partial structure having an aromatic ring. A total number of benzene nuclei constituting the aromatic ring in the at least one partial structure is no less than 4. The at least one partial structure preferably comprises a partial structure represented by formula (1). The sum of p1, p2, p3 and p4 is preferably no less than 1. At least one of R1 to R4 preferably represents a monovalent carbon-carbon triple bond-containing group. The at least one partial structure also preferably comprises a partial structure represented by formula (2). The sum of q1, q2, q3 and q4 is preferably no less than 1. At least one of R5 to R8 preferably represents a monovalent carbon-carbon triple bond-containing group.
Abstract:
Provided is a tire member which is satisfactory in low fuel consumption performance and exhibits higher strength and more excellent abrasion resistance as compared with conventional ones. The tire member is a tire member obtained by subjecting a composition containing a hydrogenated conjugated diene polymer and a crosslinking agent to a crosslinking treatment, wherein the hydrogenated conjugated diene polymer is a hydrogenated product of a conjugated diene polymer that has a structural unit derived from butadiene and has a functional group at one end or both ends and the functional group is one or more groups selected from the group consisting of an amino group, an imino group, a pyridyl group, a phosphino group, a thiol group, and a hydrocarbyloxysilyl group.
Abstract:
A composition includes: a compound including an aromatic hydrocarbon ring structure, and a partial structure represented by formula (1) which bonds to the aromatic hydrocarbon ring structure; and a solvent. The aromatic hydrocarbon ring structure has no fewer than 25 carbon atoms. In the formula (1), X represents a group represented by formula (i), (ii), (iii), or (iv); and *'s denote binding sites to two adjacent carbon atoms constituting the aromatic hydrocarbon ring structure. A method of producing a patterned substrate, includes applying the composition directly or indirectly on a substrate to form a resist underlayer film; forming a resist pattern directly or indirectly on the resist underlayer film; and carrying out etching using the resist pattern as a mask.