Abstract:
A composition for forming a resist underlayer film includes a polysiloxane, and an organic solvent composition. The organic solvent composition includes an alkylene glycol monoalkyl ether acetate having a standard boiling point of less than 150.0° C., and an organic solvent having a standard boiling point of no less than 150.0° C. In the organic solvent composition, a content of the alkylene glycol monoalkyl ether acetate is no less than 50% by mass and no greater than 99% by mass, and a content of the organic solvent is no less than 1% by mass and no greater than 50% by mass.
Abstract:
A resin composition for forming a resist underlayer film includes a resin that includes an aromatic ring, and a crosslinking agent having a partial structure represented by a following formula (i). X represents an oxygen atom, a sulfur atom, *—COO— or —NRA—. R1 represents a hydrogen atom or a C1-30 monovalent hydrocarbon group. R2 represents a hydroxy group, a sulfanil group, a cyano group, a nitro group, a C1-30 monovalent hydrocarbon group, a C1-30 monovalent oxyhydrocarbon group or a C1-30 monovalent sulfanilhydrocarbon group. p is an integer of 1 to 3.
Abstract:
A radiation-sensitive resin composition includes: a resin including a structural unit represented by formula (1); a radiation-sensitive acid generator; and a solvent. R1 is a hydrogen atom, a fluorine atom, a methyl group, or a trifluoromethyl group; L1 represents a single bond or —COO-L-; L represents a substituted or unsubstituted alkanediyl group; R2 represents a monovalent hydrocarbon group having 1 to 20 carbon atoms; L2 represents a single bond or a divalent linking group; and Ar represents a group obtained by removing (n+1) hydrogen atoms from an aromatic ring. R3 is independently a halogen atom, a halogenated hydrocarbon group, a hydroxy group, a monovalent hydrocarbon group having 1 to 10 carbon atoms, or a monovalent alkyl ether group having 1 to 10 carbon atoms, and at least one R3 is a halogen atom or a halogenated hydrocarbon group.
Abstract:
A radiation-sensitive resin composition includes: a first polymer having a first structural unit which includes a phenolic hydroxyl group, and a second structural unit which includes an acid-labile group and a carboxy group which is protected by the acid-labile group; a second polymer having a third structural unit represented by the following formula (S-1), and a fourth structural unit which is a structural unit other than the third structural unit and is represented by the following formula (S-2); and a radiation-sensitive acid generator, wherein the acid-labile group includes a monocyclic or polycyclic ring structure having no fewer than 3 and no more than 20 ring atoms.
Abstract:
A radiation-sensitive resin composition includes: a first polymer having a first structural unit which includes a phenolic hydroxyl group, and a second structural unit which includes an acid-labile group and a carboxy group which is protected by the acid-labile group; a second polymer having a third structural unit represented by the following formula (S-1), and a fourth structural unit which is a structural unit other than the third structural unit and is represented by the following formula (S-2); and a radiation-sensitive acid generator, wherein the acid-labile group includes a monocyclic or polycyclic ring structure having no fewer than 3 and no more than 20 ring atoms.
Abstract:
A composition for cleaning a semiconductor substrate contains: a novolak resin; an organic acid not being a polymeric compound; and a solvent. A solid content concentration of the composition is no greater than 20% by mass. The organic acid is preferably a carboxylic acid. The carboxylic acid is preferably a monocarboxylic acid, polycarboxylic acid or a combination thereof. The molecular weight of the organic acid is preferably from 50 to 500. The content of the organic acid with respect to 10 parts by mass of the novolak resin is preferably from 0.001 parts by mass to 10 parts by mass. The solvent includes preferably an ether solvent, an alcohol solvent, or a combination thereof. The proportion of the ether solvent, the alcohol solvent, or the combination thereof in the solvent is preferably no less than 50% by mass.
Abstract:
The composition for film formation includes a compound including a group of the formula (1) and a solvent. In the formula (1), R1 to R4 each independently represent a hydrogen atom, a monovalent organic group having 1 to 20 carbon atoms, or R1 to R4 taken together represent a cyclic structure having 3 to 20 ring atoms together with the carbon atom or a carbon chain to which R1 to R4 bond. Ar1 represents a group obtained by removing (n+3) hydrogen atoms from an aromatic ring of an arene having 6 to 20 carbon atoms. n is an integer of 0 to 9. R5 represents a hydroxy group, a halogen atom, a nitro group, or a monovalent organic group having 1 to 20 carbon atoms.
Abstract:
A method comprises applying a composition on a substrate to form a coating film on the substrate. The coating film is heated in an atmosphere in which an oxygen concentration is less than 1% by volume and a temperature is higher than 450° C. and 800° C. or lower, to form a film on the substrate. The composition comprises a compound comprising an aromatic ring. The oxygen concentration in the atmosphere during the heating of the coating film is preferably no greater than 0.1% by volume. The temperature in the atmosphere during the heating of the coating film is preferably 500° C. or higher and 600° C. or lower.
Abstract:
A composition comprises a compound and a solvent. The compound comprises a carbon-carbon triple bond-containing group, and at least one partial structure having an aromatic ring. A total number of benzene nuclei constituting the aromatic ring in the at least one partial structure is no less than 4. The at least one partial structure preferably comprises a partial structure represented by formula (1). The sum of p1, p2, p3 and p4 is preferably no less than 1. At least one of R1 to R4 preferably represents a monovalent carbon-carbon triple bond-containing group. The at least one partial structure also preferably comprises a partial structure represented by formula (2). The sum of q1, q2, q3 and q4 is preferably no less than 1. At least one of R5 to R8 preferably represents a monovalent carbon-carbon triple bond-containing group.
Abstract:
A resin composition for forming a resist underlayer film includes a resin that includes an aromatic ring, and a crosslinking agent having a partial structure represented by a following formula (i). X represents an oxygen atom, a sulfur atom, *—COO— or —NRA—. R1 represents a hydrogen atom or a C1-30 monovalent hydrocarbon group. R2 represents a hydroxy group, a sulfanil group, a cyano group, a nitro group, a C1-30 monovalent hydrocarbon group, a C1-30 monovalent oxyhydrocarbon group or a C1-30 monovalent sulfanilhydrocarbon group. p is an integer of 1 to 3.