Abstract:
A lead frame strip includes a plurality of connected unit lead frames, each unit lead frame having a die paddle and a plurality of leads connected to a periphery of the unit lead frame. A semiconductor die is attached to each of the die paddles, the unit lead frames are covered with a molding compound after the semiconductor dies are attached to the die paddles, and a laser beam is directed at regions of the periphery of each unit lead frame where the leads are located thereby forming spaced apart cuts in the periphery of each unit lead frame. The spaced apart cuts sever the leads from the periphery of each unit lead frame and extend at least partially into the molding compound in the regions of the periphery where the leads are located so that the molding compound remains intact between the spaced apart cuts.
Abstract:
A lead frame strip includes connected unit lead frames each having a die paddle, a tie bar directly connecting the die paddle to a periphery of the unit lead frame, leads directly connected to the periphery of the unit lead frame and projecting toward the die paddle, and an opening in the periphery adjacent the tie bar. The openings in the periphery of the unit lead frames are spanned with an electrically insulating material that connects the tie bar of each unit lead frame to the periphery of the unit lead frame. The direct connections between the tie bars and the periphery of the unit lead frames are severed prior to subsequent processing, so that the tie bars remain connected to the periphery of the unit lead frames by the electrically insulating material and the die paddles are electrically disconnected from the periphery of the unit lead frames.
Abstract:
A lead frame strip includes a plurality of connected unit lead frames, each unit lead frame having a die paddle and a plurality of leads connected to a periphery of the unit lead frame. A semiconductor die is attached to each of the die paddles, the unit lead frames are covered with a molding compound after the semiconductor dies are attached to the die paddles, and a laser beam is directed at regions of the periphery of each unit lead frame where the leads are located thereby forming spaced apart cuts in the periphery of each unit lead frame. The spaced apart cuts sever the leads from the periphery of each unit lead frame and extend at least partially into the molding compound in the regions of the periphery where the leads are located so that the molding compound remains intact between the spaced apart cuts.
Abstract:
A lead frame strip includes a plurality of connected unit lead frames, each unit lead frame having a die paddle and a plurality of leads connected to a periphery of the unit lead frame. The lead frame strip is processed by attaching a semiconductor die to each of the die paddles and covering the unit lead frames with a molding compound after the semiconductor dies are attached to the die paddles. Spaced apart cuts are formed in the periphery of each unit lead frame that sever the leads from the periphery of each unit lead frame and extend at least partially into the molding compound in regions of the periphery where the leads are located so that the molding compound remains intact between the cuts. The lead frame strip is processed after the cuts are formed, and the unit lead frames are later separated into individual packages.
Abstract:
A leadframe strip includes a plurality of unit leadframes connected to a periphery of the leadframe strip, each unit leadframe having a die paddle, a plurality of leads and a semiconductor die attached to the die paddle. The leadframe strip is tested by electrically isolating at least the leads from the periphery of the leadframe strip such that at least some of the leads extend uninterrupted beyond a final lead outline of the unit leadframes after electrical isolation from the periphery of the leadframe strip. The semiconductor dies are tested, which includes probing the die paddles and the leads that extend uninterrupted beyond the final lead outline of the unit leadframes after electrical isolation from the periphery of the leadframe strip. The unit leadframes are severed from the leadframe strip along the final lead outline of the unit leadframes after testing the semiconductor dies.
Abstract:
A semiconductor device is aligned by placing the semiconductor device in a nest between first and second sections of the nest when the nest is in a receiving position in which the first and second sections are spaced further apart from one another than when the nest is in an aligning position. The nest is moved from the receiving position to the aligning position with the semiconductor device in the nest so that the first and second sections are spaced closer to one another and align the semiconductor device in the nest. The semiconductor device is removed from the nest after the semiconductor device is aligned.
Abstract:
In one embodiment, a method of testing a semiconductor component includes loading a plurality of semiconductor components into a main turret of a turret handler, transporting the plurality of semiconductor components using the main turret to a test area, and splitting the plurality of semiconductor components into a first set and a second set. The method further includes testing a first semiconductor component in the first set at a first test pad using a tester while transporting a second semiconductor component in the second set to a second test pad and testing the second semiconductor component using the tester while transporting the first semiconductor component out of the first test pad. The first set and the second set are merged into the plurality of semiconductor components and the plurality of semiconductor components are transported away from the test area using the main turret.
Abstract:
A leadframe strip includes a plurality of unit leadframes connected to a periphery of the leadframe strip, each unit leadframe having a die paddle, a plurality of leads and a semiconductor die attached to the die paddle. The leadframe strip is tested by electrically isolating at least the leads from the periphery of the leadframe strip such that at least some of the leads extend uninterrupted beyond a final lead outline of the unit leadframes after electrical isolation from the periphery of the leadframe strip. The semiconductor dies are tested, which includes probing the die paddles and the leads that extend uninterrupted beyond the final lead outline of the unit leadframes after electrical isolation from the periphery of the leadframe strip. The unit leadframes are severed from the leadframe strip along the final lead outline of the unit leadframes after testing the semiconductor dies.
Abstract:
A lead frame strip includes a plurality of connected unit lead frames, each unit lead frame having a die paddle and a plurality of leads connected to a periphery of the unit lead frame. The lead frame strip is processed by attaching a semiconductor die to each of the die paddles and covering the unit lead frames with a molding compound after the semiconductor dies are attached to the die paddles. Spaced apart cuts are formed in the periphery of each unit lead frame that sever the leads from the periphery of each unit lead frame and extend at least partially into the molding compound in regions of the periphery where the leads are located so that the molding compound remains intact between the cuts. The lead frame strip is processed after the cuts are formed, and the unit lead frames are later separated into individual packages.
Abstract:
A method includes providing a semiconductor package comprising an encapsulant body and a plurality of leads that protrude out from the encapsulant body, providing a semiconductor device testing apparatus including a package holder, a plurality of contact test probes, and a lead extender, arranging the semiconductor package within the package holder, actuating the semiconductor device testing apparatus such that a first one of the contact test probes directly contacts a first one of the leads and such that a second one of the contact test probes directly contacts the lead extender, and applying a test current to the semiconductor package such that part of the test current flows through the first one of the contact test probes directly contacting the first one of the leads and such that part of the test current flows through the second one of the contact test probes directly contacting the lead extender.