Abstract:
A semiconductor chip comprises a substrate including a front surface and a rear surface, the substrate having a first via hole formed in the front surface and a second via hole formed in the rear surface, a first conductive plug formed on the substrate, the first conductive plug including a first portion formed in the first via hole and a second portion protruding from the front surface of the substrate, and a second conductive plug formed on the first conductive plug, the second conductive plug having a smaller cross-sectional area than the first conductive plug.
Abstract:
A method of manufacturing a semiconductor device includes forming an integrated circuit region on a semiconductor wafer. A first metal layer pattern is formed over the integrated circuit region. A via hole is formed to extend through the first metal layer pattern and the integrated circuit region. A final metal layer pattern is formed over the first metal layer pattern and within the via hole. A plug is formed within the via hole. Thereafter, a passivation layer is formed to overlie the final metal layer pattern.
Abstract:
A flip chip device may have a semiconductor chip with an active surface on which chip pads and a protective layer may be provided. Solder bumps may be provided on the active surface and electrically connected to the chip pads. And a solder bar may be provided on a portion of the protective layer. The solder bar may disperse thermal stress produced in the solder bumps. A metal core may be embedded within the solder bar. The flip chip device may be mounted on and flip-chip bonded to a substrate. The substrate may have land pads to which the solder bumps and the solder bar may be mechanically joined. The solder bar increases a joint area between the flip chip device and the substrate and reinforces solder connections therebetween.
Abstract:
A method of manufacturing a semiconductor device includes forming an integrated circuit region on a semiconductor wafer. A first metal layer pattern is formed over the integrated circuit region. A via hole is formed to extend through the first metal layer pattern and the integrated circuit region. A final metal layer pattern is formed over the first metal layer pattern and within the via hole. A plug is formed within the via hole. Thereafter, a passivation layer is formed to overlie the final metal layer pattern.
Abstract:
The present invention provides a method of recycling a spent flue gas denitration catalyst and a method of determining a washing time of the spent flue gas denitration catalyst. The method of recycling the spent flue gas denitration catalyst includes physically removing solids deposited in the spent flue gas denitration catalyst, removing poisoning substances deposited in the spent flue gas denitration catalyst by washing the spent flue gas denitration catalyst with a washing liquid for a washing time determined by measuring the hydrogen ion concentration of the washing liquid and drying the resulting spent flue gas denitration catalyst.
Abstract:
A wafer level chip scale package may have a gap provided between a solder bump and a bump land. The gap may be filled with a gas. A method of manufacturing a wafer level chip scale package may involve forming a redistribution line having a first opening, forming a seed metal layer having a second opening including an undercut portion, and forming the gap using the first and the second openings.
Abstract:
A solder bump structure may have a metal stud formed on a chip pad of a semiconductor chip. Surfaces of the metal stud may be plated with a solder. The metal stud may be located on a substrate pad of the substrate. The substrate pad may have a pre-solder applied thereto. After a solder reflow, the solder bump may have a concave shape.
Abstract:
A semiconductor device may include a semiconductor element. A layer of material may be provided on the semiconductor element which may have an opening through which a bond pad may be exposed. At least one flange structure may be provided on the first bond pad, the at least one flange structure made of at least two metal layers with different etch rates.
Abstract:
A wafer level chip scale package may have a gap provided between a solder bump and a bump land. The gap may be filled with a gas. A method of manufacturing a wafer level chip scale package may involve forming a redistribution line having a first opening, forming a seed metal layer having a second opening including an undercut portion, and forming the gap using the first and the second openings.
Abstract:
A semiconductor chip comprises a substrate including a front surface and a rear surface, the substrate having a first via hole formed in the front surface and a second via hole formed in the rear surface, a first conductive plug formed on the substrate, the first conductive plug including a first portion formed in the first via hole and a second portion protruding from the front surface of the substrate, and a second conductive plug formed on the first conductive plug, the second conductive plug having a smaller cross-sectional area than the first conductive plug.