摘要:
A hybrid template assisted selective epitaxy (HTASE) process is described comprising the steps of: depositing a template oxide layer on top of a silicon fin; opening a via in a selected portion of the template oxide to expose a portion of the encapsulated silicon fin and subsequently growing a nitride superconductor layer on top of the exposed silicon fin thereby forming a hybrid encapsulation of the silicon fin; performing a back-etch of the silicon fin to remove a portion (e.g., 5 nm-20 um) of the silicon fin; growing a layer formed from a group III/group V compound within an area where the silicon fin was removed via the back-etch; and if needed, removing the template oxide layer.
摘要:
A device comprising a first magnetic layer (e.g., Co2MnSi Heusler alloy or a tetragonally distorted perpendicularly magnetized (PMA) Heusler alloy such as Mn3Ga, Mn3Ge, etc.) and a second magnetic layer (e.g., Co2MnSi Heusler alloy or a tetragonally distorted perpendicularly magnetized (PMA) Heusler alloy such as Mn3Ga, Mn3Ge, etc.), and a metal halide tunnel barrier in between the first and second magnetic layers, wherein the metal halide tunnel barrier (e.g., NaF, NaCl, NaBr, LiF, LiCl, and LiBr or their combination) is lattice matched within a predetermined limit (e.g. 5%) of both the first and second magnetic layers.
摘要:
A titanium (Ti) seed layer is formed from a Ti source directly on a surface of a substrate, where the surface is substantially free of oxide and nitride, and a reactive nitrogen species is introduced from a nitrogen plasma source and additional Ti is introduced from the Ti source, wherein the nitrogen plasma: (a) reacts with the Ti seed layer to form TiN and (b) reacts with the additional Ti to form additional TiN. The TiN and additional TiN collectively form a TiN superconducting layer that directly contacts the surface of the substrate.
摘要:
A device comprising a control unit and a plurality of resistive cells. The plurality of resistive cells each comprises a first terminal, a second terminal and a polymorphic layer comprising a polymorphic material. The polymorphic layer is configured to form a tunnel barrier. The polymorphic layer is arranged between the first terminal and the second terminal. The first terminal, the second terminal and the polymorphic layer form a tunnel junction.
摘要:
Various devices are described (along with methods for making them), where the device has a tunnel barrier sandwiched between two magnetic layers (one of the magnetic layers functioning as a free layer and the other of the magnetic layers functioning as a reference layer). One magnetic layer underlies the tunnel barrier and the other magnetic layer overlies the tunnel barrier, thereby permitting spin-polarized current to pass across the magnetic layers and through the tunnel barrier. At least one of the magnetic layers includes a metal oxide sublayer (e.g., an MgO sublayer) sandwiched between magnetic material.
摘要:
A device comprising a control unit and a plurality of resistive cells. The plurality of resistive cells each comprises a first terminal, a second terminal and a polymorphic layer comprising a polymorphic material. The polymorphic layer is configured to form a tunnel barrier. The polymorphic layer is arranged between the first terminal and the second terminal. The first terminal, the second terminal and the polymorphic layer form a tunnel junction.
摘要:
A domain wall injector device uses electrical current passed across an interface between two magnetic regions whose magnetizations are aligned non-collinearly to create a domain wall or a series of domain walls in one of the magnetic regions. The method relies on a combination of innate fringing fields from the magnetic regions and the spin-transfer torque derived from the charge current. The device may be used to store data that are subsequently read out.
摘要:
A method of forming a composite crystalline nitride structure is provided. The method includes depositing a first crystalline nitride layer on a substrate, patterning the first crystalline nitride layer to form a patterned crystalline nitride layer having a top surface and that includes undulations, annealing the patterned crystalline nitride layer at a temperature between 300° C. to 850° C. to form an annealed patterned crystalline nitride layer, and depositing a second crystalline nitride layer on the annealed patterned crystalline nitride layer. The second crystalline nitride layer is lattice-matched to the underlying annealed patterned crystalline nitride layer to within 2%, thereby forming the composite crystalline nitride structure.
摘要:
Forming a hardmask layer for reactive ion etching includes depositing a hardmask above an underlayer. The hardmask includes a layer of magnesium oxide having a thickness of up to 10 nm. A resist layer is deposited above the hardmask and developed to form a pattern that exposes portions of the hardmask. The pattern is transferred from the resist layer to the hardmask by rinsing exposed portions of the hardmask with a deionized water solution.
摘要:
A magnetic double tunnel junction (MDTJ) (which, preferably, has a large aspect ratio, wherein length L of the MDTJ>>width w of the MDTJ) has magnetic domain wall(s) or DW(s) in the free layer of the MDTJ, wherein controlled movement of the DW(s) across the free layer is effected in response to the polarity, magnitude, and duration of a voltage pulse across the MDTJ. The motion and relative position of DW(s) causes the conductance of the MDTJ (that is measured across the MDTJ) to change in a symmetric and linear fashion. By reversing the polarity of the bias voltage, the creation and/or direction of the DW(s) motion can be reversed, thereby allowing for a bi-directional response to the input pulse.