Abstract:
A flow meter includes: a flat substrate; a housing that houses the substrate and has an open in at least one surface; a cover that covers the substrate and covers an open surface of the housing; a support that supports the substrate and is in contact with the cover and the substrate; and a fixing unit that connects the substrate and the housing, in which, in a first region and a second region formed by dividing the substrate into two parts at a center in a longitudinal direction, the support is disposed in the first region, and the fixing unit is disposed in the second region.
Abstract:
A flow sensor structure seals the surface of an electric control circuit and part of a semiconductor device via a manufacturing method that prevents occurrence of flash or chip crack when clamping the semiconductor device via a mold. The flow sensor structure includes a semiconductor device having an air flow sensing unit and a diaphragm, and a board or lead frame having an electric control circuit for controlling the semiconductor device, wherein a surface of the electric control circuit and part of a surface of the semiconductor device is covered with resin while having the air flow sensing unit portion exposed. The flow sensor structure may include surfaces of a resin mold, a board or a pre-mold component surrounding the semiconductor device that are continuously not in contact with three walls of the semiconductor device orthogonal to a side on which the air flow sensing unit portion is disposed.
Abstract:
A thermal type air flow meter that is capable of suppressing deformation of a base member at the time of molding is disclosed, to thereby secure dimension accuracy and reduce an influence of a dimension change on measuring accuracy. The meter includes a housing member placed in an intake passage of an internal combustion engine, and a base member fixed to the housing member and includes a secondary air passage into which part of air passing through the intake passage flows. The base member is a plate-like resin molded component formed of a synthetic resin material and includes a reinforcing structure integrally formed between a board fixing part to which a circuit board is fixed; and a secondary passage constituting part formed at a leading end part of the board fixing part, the reinforcing structure enhancing strength of the base member.
Abstract:
It is possible to suppress overcorrection. A physical quantity detecting device includes: a physical quantity detecting sensor that detects a physical quantity of a measurement target fluid and outputs a detection signal; a compensation amount calculation unit that calculates, by using the detection signal, a lead compensation amount used in lead compensation for the detection signal; and a gain control unit that adjusts the lead compensation amount based on a deviation that is an amount of change in lead compensation amount over time.
Abstract:
In a module in which a circuit board is integrally insert molded with a housing while semiconductor parts mounted on the circuit board are exposed, deformation of the circuit board caused by pressure on the circuit board by a mold for blocking the molding resin is reduced. In the module in which the circuit board is integrally insert molded with the housing while the semiconductor parts mounted on the circuit board are exposed, the deformation of the circuit board is reduced by placing a material, which has an elastic modulus smaller than the elastic modulus of the printed circuit board, in the projection area of the mold holding portion on the circuit board.
Abstract:
To obtain a physical-quantity detection device that reduces a variation in mounting position in a main passage. A physical-quantity detection device 20 of the present invention is inserted into and disposed in a main passage 22, and includes a flange 211 fixed to a seat surface 103 of the main passage 22, and the flange 211 includes a press-fitting portion 281 for positioning with respect to a seat surface 103 side.
Abstract:
An objective of the present invention is, in a thermal flowmeter having a structure including a resin portion formed in the vicinity of a diaphragm structural portion using a mold, to prevent destruction of the diaphragm structural portion at the time of pressing the mold, in a method of manufacturing the thermal flow meter, including: supporting a gas flow measurement element 200 on support members 102b and 111, the gas flow measurement element 200 including a cavity portion 202 surrounded by a substrate inclined portion 202a inclined to a substrate surface, a diaphragm 201 that covers the cavity portion, and an electrical resistive element formed in the diaphragm 201; and covering the gas flow measurement element 200 and the support members 102b and 111 with the resin portion 104 formed with the mold, to set the mold 14 such that an acting portion of pressure force by the mold that molds the resin portion 104 is positioned outside the substrate inclined portion 202a in the entire periphery of the diaphragm 201.
Abstract:
Technique of suppressing performance variations for each flow sensor is provided. In a flow sensor FS1 of the present invention, a part of a semiconductor chip CHP1 is configured to be covered with resin (MR) in a state in which a flow sensing unit (FDU) formed on a semiconductor chip CHP1 is exposed. Since an upper surface SUR(MR) of the resin (MR) is higher than an upper surface SUR(CHP) of the semiconductor chip (CHP1) by sealing the resin (MR) on a part of the upper surface SUR(CHP) of the semiconductor chip CHP1 in a direction parallel to an air flow direction, the air flow around the flow sensing unit (FDU) can be stabilized. Further, interface peeling between the semiconductor chip (CHP1) and the resin (MR) can be prevented by an increase of contact area between the semiconductor chip (CHP1) and the resin (MR).
Abstract:
A thermal type air flow meter that is capable of suppressing deformation of a base member at the time of molding is disclosed, to thereby secure dimension accuracy and reduce an influence of a dimension change on measuring accuracy. The meter includes a housing member placed in an intake passage of an internal combustion engine, and a base member fixed to the housing member and includes a secondary air passage into which part of air passing through the intake passage flows. The base member is a plate-like resin molded component formed of a synthetic resin material and includes a reinforcing structure integrally formed between a board fixing part to which a circuit board is fixed; and a secondary passage constituting part formed at a leading end part of the board fixing part, the reinforcing structure enhancing strength of the base member.
Abstract:
To obtain a thermal flow meter capable of providing thermal insulation without degrading responsiveness of a temperature detection element. A thermal flow meter 300 of the present invention includes an air flow sensing portion 602 that detects a flow rate by performing heat transfer with a measurement target gas passing through the main passage 124 using a heat transfer surface, a temperature detection element 518 that detects a temperature of the measurement target gas, a circuit package 400 obtained by connecting a processing unit 604 that processes signals of the air flow sensing portion 602 and the temperature detection element 518 to a lead and sealing the processing unit 604 using a first molding resin through a first molding process, and a housing 302 where the circuit package 400 is fixed using a second molding resin through a second molding process, wherein, in the circuit package 400, a thickness of a temperature detecting portion 452 for sealing the temperature detection element 518 is thinner than that of a package body portion 426 for sealing the processing unit 604.