Abstract:
A control means configured to perform flow rate control in which the control means outputs a control signal to a flow control valve to control a valve opening such that a measured flow rate of gas measured by a flow meter matches a set flow rate adjusts intensity of the control signal such that an absolute value of a change amount of the valve opening becomes larger as measured temperature of the gas measured by a thermometer becomes further higher than reference temperature, while the absolute value of the change amount of the valve opening becomes smaller as the measured temperature becomes further lower than the reference temperature. Thereby, change of response time on changing the valve opening of the flow control valve due to the difference between the measured temperature of the gas and the reference temperature can be reduced.
Abstract:
A thermal-type flowmeter includes a chip package. The chip package is formed through encapsulation with a resin of a sensor element, a drive circuit, a metal lead frame adapted to have mounted thereon the sensor element and the drive circuit, and a temperature detecting element. The chip package has an exposed structure in which a surface of the sensor element having the diaphragm is exposed. The temperature detecting element is mounted on the lead frame via an electrically conductive member.
Abstract:
A thermal-type flowmeter includes a chip package. The chip package is formed through encapsulation with a resin of a sensor element, a drive circuit, a metal lead frame adapted to have mounted thereon the sensor element and the drive circuit, and a temperature detecting element. The chip package has an exposed structure in which a surface of the sensor element having the diaphragm is exposed. The temperature detecting element is mounted on the lead frame via an electrically conductive member.
Abstract:
The present invention provides a thermal flow meter 300 which reduces a stress applied from a fixing portion 3721, which is used to hold and fix a circuit package 400 with respect to a housing 302, to the circuit package 400 and has high reliability. In the thermal flow meter of the invention, the circuit package 400 embedded with a flow rate measurement circuit is formed through a first resin molding process, the fixing portion 3721 is formed along with the housing 302 through a second resin molding process, and the circuit package 400 is enveloped by the fixing portion 3721, whereby the circuit package 400 is held by and fixed to the housing 302. In order to reduce the influence of a stress, generated based on a temperature change of the fixing portion 3721, on the circuit package 400, the fixing portion 3721 is constituted of a thick portion 4714 and a thin portion 4710. Since thickness of a resin of the thin portion 4710 is small, the stress to be generated is small, and a force applied to the circuit package 400 can be reduced.
Abstract:
A gas meter device of the present invention comprises plural measurement fluid passages provided in parallel between an inlet into which a fluid flows, and an outlet from which the fluid flows out; flow value measuring sections provided in the measurement fluid passages, respectively, and configured to obtain flow values of fluids flowing through the measurement fluid passages, respectively; memories configured to store coefficient data which are values corresponding to the measurement fluid passages, respectively and indicating a relation between the flow values of the fluids flowing through the measurement fluid passages, respectively, and a total flow value of the fluid flowing from the inlet to the outlet; and total flow value estimation sections configured to estimate total flow values of the fluids based on the flow values obtained by the flow value measuring sections, respectively, and the coefficient data stored in the memories. This makes it possible to reduce time required for adjustment work in manufacturing steps of the fluid meter device assembled by connecting the plural measurement fluid passages in parallel.
Abstract:
To obtain a thermal flow meter capable of providing thermal insulation without degrading responsiveness of a temperature detection element. A thermal flow meter 300 of the present invention includes an air flow sensing portion 602 that detects a flow rate by performing heat transfer with a measurement target gas passing through the main passage 124 using a heat transfer surface, a temperature detection element 518 that detects a temperature of the measurement target gas, a circuit package 400 obtained by connecting a processing unit 604 that processes signals of the air flow sensing portion 602 and the temperature detection element 518 to a lead and sealing the processing unit 604 using a first molding resin through a first molding process, and a housing 302 where the circuit package 400 is fixed using a second molding resin through a second molding process, wherein, in the circuit package 400, a thickness of a temperature detecting portion 452 for sealing the temperature detection element 518 is thinner than that of a package body portion 426 for sealing the processing unit 604.
Abstract:
A gas flow measuring method includes a gas flow measuring program and a flow measurement device. A type of gas to be measured, a temperature, a pressure, a pressure difference, an inlet diameter and a throat diameter of the flow measurement device are input. An input constant (including adiabatic index, gas viscosity, and gas density) database according to the type of the gas. An expansion coefficient is calculated using the input adiabatic index, diameter ratio, and pressure ratio. A coefficient of runoff is corrected. The calculated expansion coefficient, the corrected coefficient of runoff, and the pressure difference, the throat diameter, the diameter ratio, and the gas density are substituted in a gas flow measurement formula and calculated.
Abstract:
A measuring device includes a measuring mechanism, a counting mechanism, a variable transmission gear assembly disposed between the measuring mechanism and the counting mechanism, and an adjustment member that engages at the gear assembly for changing the transmission ratio. The gear assembly includes a first shaft and a second shaft which are arranged parallel to one another. First and second out-of-round toothed spur gears are seated on the first shaft. An overrunning clutch is disposed between each one of the first and second spur gears and the first shaft, both overrunning clutches acting in the same direction of rotation. Third and fourth out-of-round spur gears are seated on the second shaft and mesh with the respective first and second spur gears. The third spur gear is rigidly fastened on the second shaft. The fourth spur gear is rotatably mounted on the second shaft. A device for turning the fourth spur gear about a limited adjustment angle relative to the second shaft changes the transmission ratio is actuated by the adjustment member.
Abstract:
A mechanical computer for a compensated meter counter assembly for a gas meter includes a one-way clutch with an input hub drivingly releasable and connectable to an output shaft for driving a register. A computer arm carried by the input hub oscillates along a specified arc about the axis of the hub between an initial position and a travel limiting cam surface positioned in response to temperature changes. An adjustably settable connection is provided between the arm and the hub for selectively pivoting said arm about said hub to position the outer end of the arm in a selectively set angular position relative to said hub and along the arc. In this position the outer end of the arm is held so as to precisely register with the initial position of the arc at the start of each oscillation.
Abstract:
In a freezing agent consumption measurement system for measuring the consumption of the freezing agent in a low-temperature container, due to evaporation of the freezing agent, including a gas flow meter provided in the gas flow path to measure the flow of the evaporated gas from the freezing agent, a tank is provided in the gas flow path means, and the pressure in the tank is maintained at a predetermined value. The measurement of the flow of the gas is not affected by the variation in the atmospheric pressure, and accordingly accurate measurement of the consumption of the freezing agent is accomplished.