Nitride Diffusion Barrier Structure for Spintronic Applications

    公开(公告)号:US20210175414A1

    公开(公告)日:2021-06-10

    申请号:US17182536

    申请日:2021-02-23

    摘要: A magnetic tunnel junction (MTJ) is disclosed wherein a nitride diffusion barrier (NDB) has a L2/L1/NL or NL/L1/L2 configuration wherein NL is a metal nitride or metal oxynitride layer, L2 blocks oxygen diffusion from an adjoining Hk enhancing layer, and L1 prevents nitrogen diffusion from NL to the free layer (FL) thereby enhancing magnetoresistive ratio and FL thermal stability, and minimizing resistance x area product for the MTJ. NL is the uppermost layer in a bottom spin valve configuration, or is formed on a seed layer in a top spin valve configuration such that L2 and L1 are always between NL and the FL or pinned layer, respectively. In other embodiments, one or both of L1 and L2 are partially oxidized. Moreover, either L2 or L1 may be omitted when the other of L1 and L2 is partially oxidized. A spacer between the FL and L2 is optional.

    Fully compensated synthetic ferromagnet for spintronics applications

    公开(公告)号:US10522747B2

    公开(公告)日:2019-12-31

    申请号:US16278766

    申请日:2019-02-19

    摘要: A laminated seed layer stack with a smooth top surface having a peak to peak roughness of 0.5 nm is formed by sequentially sputter depositing a first seed layer, a first amorphous layer, a second seed layer, and a second amorphous layer where each seed layer may be Mg and has a resputtering rate 2 to 30X that of the amorphous layers that are TaN, SiN, or a CoFeM alloy. A template layer that is NiCr or NiFeCr is formed on the second amorphous layer. As a result, perpendicular magnetic anisotropy in an overlying magnetic layer that is a reference layer, free layer, or dipole layer is substantially maintained during high temperature processing up to 400° C. and is advantageous for magnetic tunnel junctions in embedded MRAMs, spintronic devices, or in read head sensors. The laminated seed layer stack may include a bottommost Ta or TaN buffer layer.

    Fully Compensated Synthetic Ferromagnet for Spintronics Applications

    公开(公告)号:US20190189911A1

    公开(公告)日:2019-06-20

    申请号:US16278766

    申请日:2019-02-19

    摘要: A laminated seed layer stack with a smooth top surface having a peak to peak roughness of 0.5 nm is formed by sequentially sputter depositing a first seed layer, a first amorphous layer, a second seed layer, and a second amorphous layer where each seed layer may be Mg and has a resputtering rate 2 to 30X that of the amorphous layers that are TaN, SiN, or a CoFeM alloy. A template layer that is NiCr or NiFeCr is formed on the second amorphous layer. As a result, perpendicular magnetic anisotropy in an overlying magnetic layer that is a reference layer, free layer, or dipole layer is substantially maintained during high temperature processing up to 400° C. and is advantageous for magnetic tunnel junctions in embedded MRAMs, spintronic devices, or in read head sensors. The laminated seed layer stack may include a bottommost Ta or TaN buffer layer.

    Scanning Ferromagnetic Resonance (FMR) for Wafer-Level Characterization of Magnetic Films and Multilayers

    公开(公告)号:US20180267128A1

    公开(公告)日:2018-09-20

    申请号:US15463074

    申请日:2017-03-20

    IPC分类号: G01R33/60 G01R33/345

    摘要: A ferromagnetic resonance (FMR) measurement system is disclosed with a waveguide transmission line (WGTL) connected at both ends to a mounting plate having an opening through which the WGTL is suspended. While the WGTL bottom surface contacts a portion of magnetic film on a whole wafer, a plurality of microwave frequencies is sequentially transmitted through the WGTL. Simultaneously, a magnetic field is applied to the contacted region thereby causing a FMR condition in the magnetic film. After RF output is transmitted through or reflected from the WGTL to a RF detector and converted to a voltage signal, effective anisotropy field, linewidth, damping coefficient, and/or inhomogeneous broadening are determined based on magnetic field intensity, microwave frequency and voltage output. A plurality of measurements is performed by controllably moving the WGTL or wafer and repeating the simultaneous application of microwave frequencies and magnetic field at additional preprogrammed locations on the magnetic film.