摘要:
A technique of manufacturing a semiconductor device includes forming a film on a substrate in a process chamber by supplying a precursor and a reactant to the substrate under a first temperature at which the precursor and the reactant are not pyrolyzed, and purging, after performing the act of forming the film, an interior of the process chamber by supplying at least one selected from a group consisting of a plasma-excited gas, an alcohol, and a reducing agent into the process chamber under a second temperature equal to or lower than the first temperature.
摘要:
According to the present invention, when a film is formed on a substrate, a film-forming rate or film quality is stabilized. There is provided a method of manufacturing a semiconductor device, including: (a) forming a film on a substrate by supplying at least a gas including hydroxyl group to the substrate in a process chamber while maintaining a temperature of an inside of the process chamber at a first temperature; (b) changing the temperature of the inside of the process chamber from the first temperature to a second temperature higher than the first temperature; and (c) maintaining the temperature of the inside of the process chamber at the second temperature at least in a state that the substrate is not in the process chamber.
摘要:
A method of manufacturing a semiconductor device includes forming a thin film having excellent etching resistance and a low dielectric constant on a substrate, removing first impurities containing H2O and Cl from the thin film by heating the thin film at a first temperature higher than a temperature of the substrate in the forming of the thin film, and removing second impurities containing a hydrocarbon compound (CxHy-based impurities) from the thin film in which heat treatment is performed at the first temperature by heating the thin film at a second temperature equal to or higher than the first temperature.
摘要:
An oxide film capable of suppressing reflection of a lens is formed under a low temperature. A method of manufacturing a semiconductor device includes forming a metal-containing oxide film on a substrate by performing a cycle a predetermined number of times, the cycle comprising: (a) supplying a metal-containing source to the substrate; (b) supplying an oxidizing source to the substrate; and (c) supplying a catalyst to the substrate.
摘要:
Provided is a substrate processing apparatus. The substrate processing apparatus includes: a process chamber configured to accommodate a substrate; a substrate holding member configured to hold the substrate in the process chamber; a first gas supply system including a first gas supply hole for supplying a first process gas into the process chamber; a second gas supply system including a second gas supply hole for supplying a second process gas into the process chamber; and a catalyst supply system including a catalyst supply hole for supplying a catalyst into the process chamber, wherein an angle between a first imaginary line connecting a center of the substrate holding member and the first gas supply hole and a second imaginary line connecting the center of the substrate holding member and the catalyst supply hole ranges from 63.5 degrees to 296.5 degrees.
摘要:
There is provided a technique including: (a) forming a thin film containing a predetermined element, oxygen and carbon on a substrate by performing a cycle a predetermined number of times, the cycle including: (a-1) supplying a source gas containing the predetermined element, carbon and a halogen element having a chemical bond between the predetermined element and carbon to the substrate; (a-2) supplying an oxidizing gas to the substrate; and (a-3) supplying a catalytic gas to the substrate; (b) removing a first impurity from the thin film by thermally processing the thin film at a first temperature higher than a temperature of the substrate in (a); and (c) removing a second impurity different from the first impurity from the thin film by thermally processing the thin film at a second temperature equal to or higher than the first temperature after performing (b).
摘要:
A semiconductor device manufacturing method includes forming a thin film containing silicon, oxygen, carbon and a specified Group III or Group V element on a substrate by performing a cycle a predetermined number of times. The cycle includes: supplying a precursor gas containing silicon, carbon and a halogen element and having an Si—C bonding and a first catalytic gas to the substrate; supplying an oxidizing gas and a second catalytic gas to the substrate; and supplying a modifying gas containing the specified Group III or Group V element to the substrate.
摘要:
An oxide film capable of suppressing reflection of a lens is formed under a low temperature. A method of manufacturing a semiconductor device includes forming a metal-containing oxide film on a substrate by performing a cycle a predetermined number of times, the cycle comprising: (a) supplying a metal-containing source to the substrate; (b) supplying an oxidizing source to the substrate; and (c) supplying a catalyst to the substrate.
摘要:
A method of manufacturing a semiconductor device is provided, which enables the film quality to be improved when the film is formed on a substrate at a low temperature, thus forming fine patterns. The method of manufacturing a semiconductor device includes: forming the film on a substrate by alternately supplying at least a source gas and a reactive gas to the substrate while maintaining the substrate at a first temperature by heating; and modifying the film by supplying a modification gas excited by plasma to the substrate with the film formed thereon while naturally cooling the substrate with the film formed thereon to a second temperature without heating the substrate, the second temperature being lower than the first temperature.
摘要:
A method of manufacturing a semiconductor device includes conveying a first substrate provided with an opposing surface having insulator regions and a semiconductor region exposed between the insulator regions and a second substrate provided with an insulator surface exposed toward the opposing surface of the first substrate, into a process chamber in a state that the second substrate is arranged in to face the opposing surface of the first substrate, and selectively forming a silicon-containing film with a flat surface at least on the semiconductor region of the opposing surface of the first substrate by heating an inside of the process chamber and supplying at least a silicon-containing gas and a chlorine-containing gas into the process chamber.