Abstract:
This disclosure describes various modules that can provide ultra-precise and stable packaging for an optoelectronic device such as a light emitter or light detector. The modules include vertical alignment features that can be machined, as needed, during fabrication of the modules, to establish a precise distance between the optoelectronic device and an optical element or optical assembly disposed over the optoelectronic device.
Abstract:
Opto-electronic modules include conductive wiring and connections that can facilitate integrating the modules into an external device. Some opto-electronic modules include an opto-electronic stack that includes at least one lens and an opto-electronic element. Conductive paths can extend from the bottom to the top of the module. The conductive paths can include conductive pads on the surface of the opto-electronic element, as well as wiring at least partially embedded in a substrate and walls of a housing for the opto-electronic stack. Conductive connections can be disposed between a top surface of the substrate and the bottom surface of the walls such that the conductive connections electrically connect the second wiring to the first wiring and to the conductive pads on the surface of the opto-electronic element. The modules can be fabricated, for example, in wafer-level processes so that multiple opto-electronic modules can be manufactured at the same time.
Abstract:
This disclosure describes various modules that can provide ultra-precise and stable packaging for an optoelectronic device such as a light emitter or light detector. The modules include vertical alignment features that can be machined, as needed, during fabrication of the modules, to establish a precise distance between the optoelectronic device and an optical element or optical assembly disposed over the optoelectronic device.
Abstract:
This disclosure describes various modules that can provide ultra-precise and stable packaging for an optoelectronic device such as a light emitter or light detector. The modules include vertical alignment features that can be machined, as needed, during fabrication of the modules, to establish a precise distance between the optoelectronic device and an optical element or optical assembly disposed over the optoelectronic device.
Abstract:
This disclosure describes various modules that can provide ultra-precise and stable packaging for an optoelectronic device such as a light emitter or light detector. The modules include vertical alignment features that can be machined, as needed, during fabrication of the modules, to establish a precise distance between the optoelectronic device and an optical element or optical assembly disposed over the optoelectronic device.
Abstract:
Compact opto-electronic sensor modules are described that allow detection of an object's motion occurring in spatial regions (e.g., quadrants) that are located primarily directly about the surface of a device in which the module is located. For example, light (e.g., infra-red) from a light emitting element in the module can illuminate substantially all, or at least a significant percentage of, areas in a plane directly above the surface of the device. Each of multiple light detecting elements in the module can be arranged to receive light from a respective detection zone directly above the surface of the device.
Abstract:
An optoelectronic module assembly includes an optoelectronic module. The module includes: an active optoelectronic component in or on a mounting substrate, an optical sub-assembly, and a spacer disposed between the mounting substrate and the optical sub-assembly so as to establish a particular distance between the active optoelectronic component and the optical sub-assembly. The optoelectronic module assembly also includes a recessed substrate including first and second surfaces, wherein the second surface is in a plane closer to the optical sub-assembly than is the first surface. The optoelectronic module is mounted on the first surface. The second surface is for mounting other components.
Abstract:
Compact opto-electronic sensor modules are described that allow detection of an object's motion occurring in spatial regions (e.g., quadrants) that are located primarily directly about the surface of a device in which the module is located. For example, light (e.g., infra-red) from a light emitting element in the module can illuminate substantially all, or at least a significant percentage of, areas in a plane directly above the surface of the device. Each of multiple light detecting elements in the module can be arranged to receive light from a respective detection zone directly above the surface of the device.