Abstract:
A pseudo speckle pattern generation apparatus includes a light source, a beam expander, and a spatial light modulator. The spatial light modulator has an intensity modulation distribution based on a pseudo speckle pattern calculated from a pseudo random number pattern and a correlation function, receives light output from the light source and increased in beam diameter by the beam expander, spatially modulates the received light according to the modulation distribution, and outputs modulated light.
Abstract:
A quantum simulator includes a pseudo speckle pattern generator, a main vacuum chamber, an atomic gas supply unit, a light beam generator, a photodetector, and an atom number detector. The pseudo speckle pattern generator generates a pseudo speckle pattern in the inside of the main vacuum chamber by light allowed to enter the inside of the main vacuum chamber through the second window. The pseudo speckle pattern generator includes a controller, a light source, a beam expander, a spatial light modulator, and a lens. The controller sets a modulation distribution of the spatial light modulator based on a two-dimensional pseudo random number pattern.
Abstract:
A pseudo speckle pattern generation apparatus includes a first spatial light modulator, a first lens, a second spatial light modulator, a second lens and the like. The first spatial light modulator has a first intensity modulation distribution based on a pseudo random number pattern, and spatially modulates intensity of light output from a light source and increased in beam diameter by a beam expander. The second spatial light modulator has a second intensity modulation distribution based on a filter function, is provided on a plane where a Fourier transformed pattern is generated by the first lens, and spatially modulates intensity of the light reached through the first lens. The second lens optically Fourier transforms a pattern of the light output from the second spatial light modulator to generate a Fourier transformed pattern as a pseudo speckle pattern.
Abstract:
A quantum simulator includes a pseudo speckle pattern generator, a main vacuum chamber, an atomic gas supply unit, a light beam generator, a photodetector, and an atom number detector. The pseudo speckle pattern generator generates a pseudo speckle pattern in the inside of the main vacuum chamber by light allowed to enter the inside of the main vacuum chamber through the second window. The pseudo speckle pattern generator includes a controller, a light source, a beam expander, a spatial light modulator, and a lens. The controller sets a modulation distribution of the spatial light modultor based on a two-dimensional pseudo random number pattern.
Abstract:
A quantum simulator includes a pseudo speckle pattern generator, a main vacuum chamber, an atomic gas supply unit, a light beam generator, a photodetector, and an atom number detector. The pseudo speckle pattern generator generates a pseudo speckle pattern in the inside of the main vacuum chamber by light allowed to enter the inside of the main vacuum chamber through the second window. The pseudo speckle pattern generator includes a controller, a light source, a beam expander, a spatial light modulator, and a lens. The controller sets a modulation distribution of the spatial light modulator based on a two-dimensional pseudo random number pattern.
Abstract:
A micro object control apparatus for controlling motion of a micro object within a medium includes a light source, an optical vortex generation unit, an objective lens, an imaging unit, an analysis unit, and a movement unit. The analysis unit acquires first motion information of the micro object based on the image data in which the micro object optically trapped with the optical vortex is imaged by setting the focal position of the optical vortex to a first position, acquires second motion information of the micro object based on the image data in which the micro object optically trapped with the optical vortex is imaged by setting the focal position of the optical vortex to a second position, and evaluates a state of an optical trap of the micro object with the optical vortex by comparing the first motion information and the second motion information.
Abstract:
A light control device 1 includes a light source 10, a prism 20, a spatial light modulator 30, a drive unit 31, a control unit 32, a lens 41, an aperture 42, and a lens 43. The spatial light modulator 30 is a phase modulating spatial light modulator, includes a plurality of two-dimensionally arrayed pixels, is capable of phase modulation in each of these pixels in a range of 4π or more, and presents a phase pattern to modulate the phase of light in each of the pixels. This phase pattern is produced by superimposing a blazed grating pattern for light diffraction and a phase pattern having a predetermined phase modulation distribution, and with a phase modulation range of 2π or more.
Abstract:
A pseudo speckle pattern generation apparatus includes a light source, a beam expander, and a spatial light modulator. The spatial light modulator has an intensity modulation distribution based on a pseudo speckle pattern calculated from a pseudo random number pattern and a correlation function, receives light output from the light source and increased in beam diameter by the beam expander, spatially modulates the received light according to the modulation distribution, and outputs modulated light.
Abstract:
In the control of light condensing irradiation of laser light using a spatial light modulator, the number of wavelengths of the laser light, a value of each wavelength, and incident conditions of the laser light are acquired (step S101), the number of light condensing points, and a light condensing position, a wavelength, and a light condensing intensity on each light condensing point are set (S104), and a light condensing control pattern to be provided for the laser light is set for each light condensing point (S107). Then, a modulation pattern to be presented in the spatial light modulator is designed in consideration of the light condensing control pattern (S108). Further, in the design of a modulation pattern, a design method focusing on an effect by a phase value of one pixel is used, and when evaluating a light condensing state on the light condensing point, a propagation function to which a phase pattern opposite to the light condensing control pattern is added is used. Thereby, a light modulation control method, a program, a device, and a laser light irradiation device, which are capable of preferably achieving light condensing control of laser light are achieved.
Abstract:
In the control of light condensing irradiation of laser light using a spatial light modulator, the number of wavelengths, a value of each wavelength, and incident conditions of the laser light are acquired, the number of light condensing points, and a light condensing position, a wavelength, and a light condensing intensity on each light condensing point are set, and a light condensing control pattern is set for each light condensing point. Then, a modulation pattern presented in the spatial light modulator is designed in consideration of the light condensing control pattern. Further, in the design of a modulation pattern, a design method focusing on an effect by a phase value of one pixel is used, and when evaluating a light condensing state, a propagation function to which a phase pattern opposite to the light condensing control pattern is added is used.