Abstract:
A method for using a first device to pair a second device to a user account may include receiving first wireless communications using a first wireless protocol, where the first device has previously been paired with the user account. The method may also include receiving a transmission that instructs the first device to establish second wireless communications with the second device, and then establishing the second wireless communications between the first device and the second device using a second wireless protocol. The method may additionally include receiving, using the first wireless protocol, information allowing the second device to use the first wireless protocol, and sending the information to the second device using the second wireless protocol, where a new pairing between the second device and the user account is established using the first wireless protocol.
Abstract:
include using an application on a mobile device to establish first wireless communications with a first hazard detector that was previously paired with the user account. The method may also include transmitting, to the first hazard detector and using the first wireless protocol, a transmission that instructs the first hazard detector to establish second wireless communications with a second hazard detector, where the second wireless communications use a second wireless protocol. The method may additionally include transmitting network credentials to the first hazard detector using the first wireless protocol, where the credentials are then sent from the first hazard detector to the second hazard detector using the second wireless protocol, such that the second hazard detector can pair with the user account using the first wireless protocol.
Abstract:
A method for establishing a pairing between a smart-home device and an online account may include instantiating an application on a computing device and receiving a first code from a central server. The application may receive a second code from printed material associated with the smart-home device. The smart-home device may broadcast a first communication protocol, and the application may join the first mutation protocol. The application can be authenticated by the smart-home device using the second code, and the application can receive an identity of a second communication protocol from a user. The application can then transmit the identity of the second communication protocol to the smart-home device. The smart-home device can use the second mutation protocol to access the Internet and transmit the first code to the central server, where the central server can use the first code in completing the pairing process.
Abstract:
A method for establishing a pairing between a smart-home device and an online account may include instantiating an application on a computing device and receiving a first code from a central server. The application may receive a second code from printed material associated with the smart-home device. The smart-home device may broadcast a first communication protocol, and the application may join the first mutation protocol. The application can be authenticated by the smart-home device using the second code, and the application can receive an identity of a second communication protocol from a user. The application can then transmit the identity of the second communication protocol to the smart-home device. The smart-home device can use the second mutation protocol to access the Internet and transmit the first code to the central server, where the central server can use the first code in completing the pairing process.
Abstract:
System for displaying hazard events and adjusting hazard detector settings on a mobile device includes a user interface executed on the mobile device, a hazard detector, and a computer server system communicatively coupled to the mobile device and hazard detector. The hazard detector generates hazard events indicating detection of smoke or carbon monoxide. The hazard events are transmitted to the computer server system and then to the mobile device. User interface displays the hazard events in an event group. User interface receives an adjusted value for a setting of the hazard detector and transmits the adjusted value to the computer server system. The computer server system determines that the adjusted value corresponds to the hazard detector, receives a check-in event from the hazard detector, and transmits the adjusted value to the hazard detector in response to receiving the check-in event. The hazard detector applies the adjusted value to the setting.
Abstract:
include using an application on a mobile device to establish first wireless communications with a first smart-home device that was previously paired with the user account. The method may also include transmitting, to the first smart-home device and using the first wireless protocol, a transmission that instructs the first smart-home device to establish second wireless communications with a second smart-home device, where the second wireless communications use a second wireless protocol. The method may additionally include transmitting network credentials to the first smart-home device using the first wireless protocol, where the credentials are then sent from the first smart-home device to the second smart-home device using the second wireless protocol, such that the second smart-home device can pair with the user account using the first wireless protocol.
Abstract:
In various embodiments, a hazard detector is presented. The hazard detector may include a hazard detection sensor that detects a presence of a type of hazard. The hazard detector may include a light and a light sensor that senses a brightness level in an ambient environment of the hazard detector. The hazard detector may include a processing system configured to receive an indication of the brightness level in the ambient environment of the hazard detector from the light sensor. The processing system may determine the brightness level in the ambient environment of the hazard detector has reached a threshold value. A status check of one or more components of the hazard detector may be performed. The processing system may cause the light to illuminate using a selected illumination state in response to the determining the brightness level in the ambient environment of the hazard detector has reached the threshold value.
Abstract:
include using an application on a mobile device to establish first wireless communications with a first hazard detector that was previously paired with the user account. The method may also include transmitting, to the first hazard detector and using the first wireless protocol, a transmission that instructs the first hazard detector to establish second wireless communications with a second hazard detector, where the second wireless communications use a second wireless protocol. The method may additionally include transmitting network credentials to the first hazard detector using the first wireless protocol, where the credentials are then sent from the first hazard detector to the second hazard detector using the second wireless protocol, such that the second hazard detector can pair with the user account using the first wireless protocol.
Abstract:
Various methods and systems for hazard detectors are presented. Such hazard detectors may include one or more hazard sensors that are configured to detect the presence of one or more types of hazards. Such hazard detectors may include a circular or a ring-shaped light comprising a plurality of lighting elements. Such a ring-shaped light may be configured to illuminate using a plurality of colors and, possibly, a plurality of animation patterns. Such hazard detectors may include a processing system configured to cause the ring-shaped light to illuminate using the plurality of colors and the plurality of animation patterns in response to a plurality of states corresponding to the battery module and the plurality of hazard sensors.
Abstract:
System for displaying hazard events and adjusting hazard detector settings on a mobile device includes a user interface executed on the mobile device, a hazard detector, and a computer server system communicatively coupled to the mobile device and hazard detector. The hazard detector generates hazard events indicating detection of smoke or carbon monoxide. The hazard events are transmitted to the computer server system and then to the mobile device. User interface displays the hazard events in an event group. User interface receives an adjusted value for a setting of the hazard detector and transmits the adjusted value to the computer server system. The computer server system determines that the adjusted value corresponds to the hazard detector, receives a check-in event from the hazard detector, and transmits the adjusted value to the hazard detector in response to receiving the check-in event. The hazard detector applies the adjusted value to the setting.