摘要:
Systems and methods for forecasting events can be provided. A measurement database can store sensor measurements, each having been provided by a non-portable electronic device with a primary purpose unrelated to collecting measurements from a type of sensor that collected the measurement. A measurement set identifier can select a set of measurements. The electronic devices associated with the set of measurements can be in close geographical proximity relative to their geographical proximity to other devices. An inter-device correlator can access the set and collectively analyze the measurements. An event detector can determine whether an event occurred. An event forecaster can forecast a future event property. An alert engine can identify one or more entities to be alerted of the future event property, generate at least one alert identifying the future event property, and transmit the at least one alert to the identified one or more entities.
摘要:
A thermostat user interface for a network-connected thermostat is described. The thermostat includes a frustum-shaped shell body having a circular cross-section and a sidewall extending between first and second ends, the second end being user-facing when the thermostat is wall-mounted; a circular rotatable ring being user rotatable for adjusting a setting of the thermostat; and a circular cover including a clear circular center portion surrounded by a painted outer portion. The clear circular center portion permits a corresponding circular portion of a non-circular dot-matrix color display element to be visible through the circular cover and the painted outer portion masks a remaining portion of the non-circular dot-matrix color display element so as to create a circular graphical user interface.
摘要:
An occupancy sensing electronic thermostat is described that includes a thermostat body, an electronic display that is viewable by a user in front of the thermostat, a passive infrared sensor for measuring infrared energy and an infrared energy directing element formed integrally with a front surface of the thermostat body. The passive infrared sensor may be positioned behind the infrared energy directing element such that infrared energy is directed thereonto by the infrared energy directing element. The thermostat may also include a temperature sensor and a microprocessor programmed to detect occupancy based on measurements from the passive infrared sensor.
摘要:
A user-friendly, network-connected learning thermostat is described. The thermostat is made up of (1) a wall-mountable backplate that includes a low-power consuming microcontroller used for activities such as polling sensors and switching on and off the HVAC functions, and (2) separable head unit that includes a higher-power consuming microprocessor, color LCD backlit display, user input devices, and wireless communications modules. The thermostat also includes a rechargeable battery and power-stealing circuitry adapted to harvest power from HVAC triggering circuits. By maintaining the microprocessor in a “sleep” state often compared to the lower-power microcontroller, high-power consuming activities, such as learning computations, wireless network communications and interfacing with a user, can be temporarily performed by the microprocessor even though the activities use energy at a greater rate than is available from the power stealing circuitry.
摘要:
A system including a thermostat user interface for a network-connected thermostat is described. The system includes a thermostat including a frustum-shaped shell body having a circular cross-section and a circular rotatable ring, which is user rotatable for adjusting a setting of the thermostat. The system further includes a client application that is operable on a touch-screen device separate from the thermostat, that displays a graphical representation of a circular dial, that detects a user-input motion proximate the graphical representation, that determines a user-selected setpoint temperature value based on the user-input motion, that displays a numerical representation of the user-selected setpoint temperature value, and that wirelessly transmits to the thermostat data representative of the user-selected setpoint temperature.
摘要:
A thermostat user interface for a network-connected thermostat is described. The thermostat includes a frustum-shaped shell body having a circular cross-section and a sidewall extending between first and second ends, the second end being user-facing when the thermostat is wall-mounted; a circular rotatable ring being user rotatable for adjusting a setting of the thermostat; and a circular cover including a clear circular center portion surrounded by a painted outer portion. The clear circular center portion permits a corresponding circular portion of a non-circular dot-matrix color display element to be visible through the circular cover and the painted outer portion masks a remaining portion of the non-circular dot-matrix color display element so as to create a circular graphical user interface.
摘要:
A thermostat may include one or more temperature sensors, and a processing system configured to be in operative communication with an HVAC system. The processing system may be configured to operate a first operating state characterized by relatively low power consumption and a corresponding relatively low associated heat generation, and a second operating state characterized by relatively high power consumption and a corresponding relatively high associated heat generation. During time intervals in which the processing system is operating in the first operating state, the processing system may process the temperature sensor measurements according to a first ambient temperature determination algorithm to compute the determined ambient temperature. During time intervals in which the processing system is operating in the second operating state, the processing system may process the temperature sensor measurements according to a second ambient temperature determination algorithm to compute the determined ambient temperature.
摘要:
Provided according to one or more embodiments is a thermostat having a housing, the housing including a forward-facing surface, the thermostat comprising a passive infrared (PIR) motion sensor disposed inside the housing for sensing occupancy in the vicinity of the thermostat. The PIR motion sensor has a radiation receiving surface and is able to detect the lateral movement of an occupant in front of the forward-facing surface of the housing. The thermostat further comprises a grille member having one or more openings and included along the forward-facing surface of the housing, the grille member being placed over the radiation receiving surface of the PIR motion sensor. The grille member is configured and dimensioned to visually conceal and protect the PIR motion sensor disposed inside the housing, the visual concealment promoting a visually pleasing quality of the thermostat, while at the same time permitting the PIR motion sensor to effectively detect the lateral movement of the occupant. In one embodiment, the grille member openings are slit-like openings oriented along a substantially horizontal direction.