Abstract:
A beam delivery system according to an aspect of the present disclosure is used for an extreme ultraviolet light generation apparatus and includes a propagation mirror disposed on an optical path between a laser apparatus and a condensation optical system and configured to change the propagation direction of a pulse laser beam, and a curvature mirror disposed on an optical path between the propagation mirror and the condensation optical system and having a concave reflective surface configured to convert the pulse laser beam to be incident on the condensation optical system into a convergent beam. The curvature mirror has a focal length selected so that the beam spread angle of the pulse laser beam from the curvature mirror is constant irrespective of thermal deformation of the propagation mirror or constant with change in a predetermined allowable range irrespective of thermal deformation of the propagation mirror.
Abstract:
A collector mirror exchanging apparatus capable of safely and easily exchanging a collector mirror for collecting extreme ultra violet light emitted from plasma generated within a chamber of an extreme ultra violet light source apparatus. The collector mirror exchanging apparatus includes: a supporting base for supporting a collector mirror or a collector mirror structure; and a guiding rail disposed on the supporting base and regulating a moving direction of the collector mirror or the collector mirror structure; wherein at least the collector mirror is taken out of the chamber by moving the collector mirror or the collector mirror structure along the guiding rail on the supporting base.
Abstract:
There is provided a slab amplifier including an optical system (48, 51) provided in a chamber (47) to allow a seed beam having entered from a first window into the space between a pair of electrodes (42, 43) to be repeatedly reflected between the space so that the seed beam is amplified to be an amplified beam; a first aperture plate (61) provided between the first window and the electrodes, and having an opening of a dimension equal to or greater than a cross-section of the seed beam and equal to or smaller than a dimension of the first window; and a second aperture plate (62) provided between the second window and the electrodes, and having an opening of a dimension equal to or greater than a cross-section of the amplified beam and equal to or smaller than a dimension of the second window.
Abstract:
There is provided a laser unit that may include a master oscillator, a laser amplifier, and an adjuster. The master oscillator may be configured to output a laser light beam. The laser amplifier may be disposed in a light path of the laser light beam outputted from the master oscillator. The adjuster may be disposed in the light path of the laser light beam, and may be configured to adjust a beam cross-sectional shape of the laser light beam amplified by the laser amplifier to be a substantially circular shape. The beam cross-sectional shape may be at a beam waist of the laser light beam or in the vicinity of the beam waist of the laser light beam, and may be in a plane orthogonal to a light path axis.
Abstract:
An extreme ultraviolet light source apparatus using a spectrum purity filter capable of obtaining EUV light with high spectrum purity. The apparatus includes a chamber; a target supply unit for supplying a target material; a driver laser using a laser gas containing a carbon dioxide gas as a laser medium, for applying a laser beam to the target material to generate plasma; a collector mirror for collecting and outputting the extreme ultraviolet light radiated from the plasma; and a spectrum purity filter provided in an optical path of the extreme ultraviolet light, for transmitting the extreme ultraviolet light and reflecting the laser beam, the spectrum purity filter including a mesh having electrical conductivity and formed with an arrangement of apertures having a pitch not larger than a half of a shortest wavelength of the laser beam applied by the driver laser.
Abstract:
A beam adjusting apparatus of an extreme ultraviolet light generating apparatus may include: a first pair of mirrors constituted by a first concave mirror and a first convex mirror, provided along the optical path of the pulsed laser beam; a second pair of mirrors constituted by a second concave mirror and a second convex mirror, which are arranged in an order reversed from the order of arrangement of the first concave mirror and the first convex mirror, provided along the optical path of the pulsed laser beam downstream from the first pair of mirrors; and a moving apparatus configured to simultaneously increase or simultaneously decrease the distance between the first concave mirror and the first convex mirror and the distance between the second concave mirror and the second convex mirror.
Abstract:
A beam delivery system may include: beam adjusters configured to adjust a divergence angle of a pulse laser beam; a beam sampler configured to separate a part of the pulse laser beam outputted from a first beam adjuster provided at the most downstream among the beam adjusters to acquire a sample beam; a beam monitor configured to receive the sample beam and output a monitored diameter; and a beam delivery controller configured to control the beam adjusters based on the monitored diameter. The beam delivery controller may adjust each of beam adjusters other than the first beam adjuster selected one after another from the most upstream so that the monitored diameter at the beam monitor becomes a predetermined value specific to the beam adjuster, and adjust the first beam adjuster so that the pulse laser beam becomes focused at a position downstream of a target position.
Abstract:
A regenerative amplifier according to one aspect of this disclosure is used in combination with a laser device, and the regenerative amplifier may include: a pair of resonator mirrors constituting an optical resonator; a slab amplifier provided between the pair of the resonator mirrors for amplifying a laser beam with a predetermined wavelength outputted from the laser device; and an optical system disposed to configure a multipass optical path along which the laser beam is reciprocated inside the slab amplifier, the optical system transferring an optical image of the laser beam at a first position as an optical image of the laser beam at a second position.
Abstract:
There is provided a laser unit that may include: a master oscillator configured to output a linear-polarized laser light beam; a first polarization device disposed in a light path of the linear-polarized laser light beam and provided with a polarization axis substantially aligned with a polarization direction of the linearly-polarized incident laser light beam; a second polarization device disposed in the light path of the linear-polarized laser light beam and provided with a polarization axis substantially aligned with a direction of the polarization axis of the first polarization device; and a laser amplifier disposed between the first polarization device and the second polarization device in the light path of the linear-polarized laser light beam and including a pair of discharge electrodes disposed to oppose each other, an opposing direction of the pair of discharge electrodes being substantially aligned with the direction of the polarization axis of the first polarization device.
Abstract:
There may be provided a laser amplifier including: a chamber containing a laser medium; a first window provided on the chamber, and configured to allow a laser light beam inputted from outside of the chamber to enter the chamber; an excitation unit configured to amplify, by exciting the laser medium, the laser light beam that has entered the chamber; a second window provided on the chamber, and configured to allow the laser light beam that has been amplified by the excitation unit to exit from the chamber to the outside; a mirror provided on a laser light path between the first window and the second window; and a wavelength selection film provided on one or more of the first window, the second window, and the mirror, and configured to suppress propagation of light beams of one or more suppression target wavelengths different from a desired wavelength.